Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Differentiable Optimization and Equation Solving
Details
This book gives an overview of the dramatic reorganization that has occurred during the last decade in one area of mathematical programming and numerical computation: algorithmic differentiable optimization and equation-solving, or, more simply, algorithmic differentiable programming. The reader is assumed to be familiar with advanced calculus, numerical analysis, the theory and algorithms of linear and nonlinear programming, and the fundamentals of computer science. Thus, this monograph is intended for researchers in optimization and advanced graduate students. But others will find the ideas to be of interest as well.
Includes supplementary material: sn.pub/extras
Inhalt
Foundations.- The Karmarkar Revolution.- The Newton-Cauchy Method.- Euler-Newton and Lagrange-NC Methods.- Lessons from One Dimension.- A Misleading Paradigm.- CG and the Line Search.- Gilding the NelderMead Lily.- Choosing the Right Diagonal Scale.- Historical Parallels.- LP from the Newton-Cauchy Perspective.- Diagonal Metrics and the QC Method.- Linear Programming Post-Karmarkar.- LP from the Euler-Newton Perspective.- Log-Barrier Transformations.- Karmarkar Potentials and Algorithms.- Algorithmic Science.- Algorithmic Principles.- Multialgorithms: A New Paradigm.- An Emerging Discipline.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781441930613
- Sprache Englisch
- Auflage Softcover reprint of the original 1st edition 2003
- Größe H235mm x B155mm x T16mm
- Jahr 2011
- EAN 9781441930613
- Format Kartonierter Einband
- ISBN 1441930612
- Veröffentlichung 08.10.2011
- Titel Differentiable Optimization and Equation Solving
- Autor John L. Nazareth
- Untertitel A Treatise on Algorithmic Science and the Karmarkar Revolution
- Gewicht 423g
- Herausgeber Springer New York
- Anzahl Seiten 276
- Lesemotiv Verstehen
- Genre Mathematik