Differentialgeometrie
Details
Dieses Buch ist eine Einführung in die Differentialgeometrie und ein passender Begleiter zum Differentialgeometrie-Modul (ein- und zweisemestrig). Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Bei der Neuauflage wurden einige zusätzliche Lösungen zu den Übungsaufgaben ergänzt.
Autorentext
Wolfgang Kühnel ist Professor am Mathematischen Institut der Universität Stuttgart.
Inhalt
Bezeichnungen sowie Hilfsmittel aus der Analysis.- Kurven im IRn.- Lokale Flächentheorie, insbes. Drehflächen, Regelflächen, Minimalflächen.- Die innere Geometrie von Flächen.- Riemannsche Mannigfaltigkeiten.- Der Krümmungstensor.- Räume konstanter Krümmung.- Einstein-Räume.- Lösungen zu Übungsaufgaben.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783658006143
- Auflage 6., akt. Aufl. 2013
- Editor Mehrmann (Prof. Dr.) u a, Volker Mehrmann (Prof. Dr.) u a
- Sprache Deutsch
- Genre Geometrie
- Lesemotiv Verstehen
- Größe H166mm x B236mm x T17mm
- Jahr 2012
- EAN 9783658006143
- Format Kartonierter Einband
- ISBN 978-3-658-00614-3
- Veröffentlichung 30.11.2012
- Titel Differentialgeometrie
- Autor Wolfgang Kühnel
- Untertitel Kurven - Flächen - Mannigfaltigkeiten
- Gewicht 570g
- Herausgeber Gabler, Betriebswirt.-Vlg
- Anzahl Seiten 284