Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Dimensionality Reduction with Unsupervised Nearest Neighbors
Details
This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsupervised nearest neighbors (UNN) is introduced as efficient iterative method for dimensionality reduction. Various UNN models are developed step by step, reaching from a simple iterative strategy for discrete latent spaces to a stochastic kernel-based algorithm for learning submanifolds with independent parameterizations. Extensions that allow the embedding of incomplete and noisy patterns are introduced. Various optimization approaches are compared, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustrate the introduced concepts and to highlight the experimental results.
Presents recent research in the Hybridization of Metaheuristics for Optimization Problems State-of-the-Art book Written from a leading expert in this field
Inhalt
Part I Foundations.- Part II Unsupervised Nearest Neighbors.- Part III Conclusions.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783662518953
- Genre Technology Encyclopedias
- Auflage Softcover reprint of the origi
- Lesemotiv Verstehen
- Anzahl Seiten 132
- Herausgeber Springer, Berlin
- Größe H235mm x B155mm
- Jahr 2017
- EAN 9783662518953
- Format Kartonierter Einband
- ISBN 978-3-662-51895-3
- Veröffentlichung 30.04.2017
- Titel Dimensionality Reduction with Unsupervised Nearest Neighbors
- Autor Oliver Kramer
- Untertitel Intelligent Systems Reference Library 51
- Gewicht 321g
- Sprache Englisch