Direct Likelihood Approximations for Generalized Linear Mixed Models

CHF 61.60
Auf Lager
SKU
C31T9G2E6Q0
Stock 1 Verfügbar
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026

Details

It is a standard approach to consider the maximum likelihood estimation procedure for the estimation of parameters in statistical modelling. The sample likelihood function has a closed form representation only if the two densities in the integrand are conjugate to each other. In case of any non- conjugate pair, no closed form representation exists. In such situations, we need to approximate the integral by making use of some numerical techniques. A first or second order Laplace approximation or the (adaptive) Gauss-Hermite quadrature method can be applied in order to get an approximative objective function. The resulting approximation of the likelihood function still needs to be numerically maximized with respect to all unknown parameters. For such a numerical maximization, all required derivatives are provided in the scope of this work. We explore the use of the (adaptive) Gauss-Hermite quadrature for Generalized Linear Mixed Models, when the conditional density of the response given the random effects is a member of the linear exponential family and the random effects are Gaussian.

Autorentext

He is a Professor of Statistics/Mathematics at Iqra University Karachi, Pakistan. He obtained his PhD from Graz University of Technology, Austria. His main area of research is Generalized Linear Mixed Models (GLMMs). He has developed direct likelihood approximation methods in GLMMs.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639286939
    • Sprache Englisch
    • Größe H220mm x B150mm x T7mm
    • Jahr 2010
    • EAN 9783639286939
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-28693-9
    • Titel Direct Likelihood Approximations for Generalized Linear Mixed Models
    • Autor Basheer Ahmad
    • Untertitel An Adaptive Approach
    • Gewicht 197g
    • Herausgeber VDM Verlag Dr. Müller e.K.
    • Anzahl Seiten 120
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38