Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Divergent Series
CHF 42.60
Auf Lager
SKU
ALPN4P21OKQ
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026
Details
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a limit. If a series converges, the individual terms of the series must approach zero. Thus any series in which the individual terms do not approach zero diverges. However, convergence is a stronger condition: not all series whose terms approach zero converge. The simplest counter example is the harmonic series A summability method M is regular if it agrees with the actual limit on all convergent series. Such a result is called an abelian theorem for M, from the prototypical Abel's theorem. More interesting and in general more subtle are partial converse results, called tauberian theorems, from a prototype proved by Alfred Tauber. Here partial converse means that if M sums the series , and some side-condition holds, then was convergent in the first place; without any side condition such a result would say that M only summed convergent series (making it useless as a summation method for divergent series).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131107313
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131107313
- Format Fachbuch
- Titel Divergent Series
- Herausgeber Betascript Publishing
- Anzahl Seiten 100
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung