Divergent Series

CHF 42.60
Auf Lager
SKU
ALPN4P21OKQ
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a limit. If a series converges, the individual terms of the series must approach zero. Thus any series in which the individual terms do not approach zero diverges. However, convergence is a stronger condition: not all series whose terms approach zero converge. The simplest counter example is the harmonic series A summability method M is regular if it agrees with the actual limit on all convergent series. Such a result is called an abelian theorem for M, from the prototypical Abel's theorem. More interesting and in general more subtle are partial converse results, called tauberian theorems, from a prototype proved by Alfred Tauber. Here partial converse means that if M sums the series , and some side-condition holds, then was convergent in the first place; without any side condition such a result would say that M only summed convergent series (making it useless as a summation method for divergent series).

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131107313
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131107313
    • Format Fachbuch
    • Titel Divergent Series
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 100
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38