Domain Adaptation and Representation Transfer

CHF 79.55
Auf Lager
SKU
F553FKJNI6H
Stock 1 Verfügbar
Geliefert zwischen Do., 18.12.2025 und Fr., 19.12.2025

Details

This book constitutes the refereed proceedings of the 5th MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2023, which was held in conjunction with MICCAI 2023, in October 2023.
The 16 full papers presented in this book were carefully reviewed and selected from 32 submissions. They discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains.



Inhalt

Domain adaptation of MRI scanners as an alternative to MRI harmonization.- MultiVT: Multiple-Task Framework for Dentistry.- Black-Box Unsupervised Domain Adaptation for Medical Image Segmentation.- PLST: A Pseudo-Labels with a Smooth Transition Strategy for Medical Site Adaptation.- Compositional Representation Learning for Brain Tumor Segmentation.- Hierarchical Compositionality in Hyperbolic Space for Robust Medical Image Segmentation.- Realistic Data Enrichment for Robust Image Segmentation in Kidney Transplant Pathology.- Boosting Knowledge Distillation via Random Fourier Features for Prostate Cancer Grading in Histopathology Images.- Semi-supervised Domain Adaptation for Automatic Quality Control of FLAIR MRIs in a Clinical Data Warehouse.- Towards Foundation Models Learned from Anatomy in Medical Imaging via Self-Supervision.- The Performance of Transferability Metrics does not Translate to Medical Tasks.- DGM-DR: Domain Generalization with Mutual Information Regularized Diabetic Retinopathy Classification.- SEDA: Self-Ensembling ViT with Defensive Distillation and Adversarial Training for robust Chest X-rays Classification.- A Continual Learning Approach for Cross-Domain White Blood Cell Classification.- Metadata Improves Segmentation Through Multitasking Elicitation.- Self-Prompting Large Vision Models for Few-Shot Medical Image Segmentation.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031458569
    • Herausgeber Springer
    • Anzahl Seiten 180
    • Lesemotiv Verstehen
    • Genre Software
    • Auflage 1st edition 2024
    • Editor Lisa Koch, M. Jorge Cardoso, Enzo Ferrante, Konstantinos Kamnitsas, Mobarakol Islam, Meirui Jiang, Nicola Rieke, Sotirios A. Tsaftaris, Dong Yang
    • Sprache Englisch
    • Gewicht 283g
    • Untertitel 5th MICCAI Workshop, DART 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 12, 2023, Proceedings
    • Größe H235mm x B155mm x T11mm
    • Jahr 2023
    • EAN 9783031458569
    • Format Kartonierter Einband
    • ISBN 3031458567
    • Veröffentlichung 14.10.2023
    • Titel Domain Adaptation and Representation Transfer

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470