Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Domain Adaptation and Representation Transfer
Details
This book constitutes the refereed proceedings of the 4th MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2022, held in conjunction with MICCAI 2022, in September 2022.
DART 2022 accepted 13 papers from the 25 submissions received. The workshop aims at creating a discussion forum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains.
Inhalt
Detecting Melanoma Fairly: Skin Tone Detection and Debiasing for Skin Lesion Classification.- Benchmarking Transformers for Medical Image Classification.- Supervised domain adaptation using gradients transfer for improved medical image analysis.- Stain-AgLr: Stain Agnostic Learning for Computational Histopathology using Domain Consistency and Stain Regeneration Loss.- MetaMedSeg: Volumetric Meta-learning for Few-Shot Organ Segmentation.- Unsupervised site adaptation by intra-site variability alignment.- Discriminative, Restorative, and Adversarial Learning: Stepwise Incremental Pretraining.- POPAR: Patch Order Prediction and Appearance Recovery for Self-supervised Medical Image Analysis.- Feather-Light Fourier Domain Adaptation in Magnetic Resonance Imaging.- Seamless Iterative Semi-Supervised Correction of Imperfect Labels in Microscopy Images.- Task-agnostic Continual Hippocampus Segmentation for Smooth Population Shifts.- Adaptive Optimization with Fewer Epochs Improves Across-Scanner Generalization of U-Net based Medical Image Segmentation.- CateNorm: Categorical Normalization for Robust Medical Image Segmentation.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031168512
- Herausgeber Springer
- Anzahl Seiten 160
- Lesemotiv Verstehen
- Genre Software
- Auflage 1st edition 2022
- Editor Konstantinos Kamnitsas, Lisa Koch, Mobarakol Islam, Ziyue Xu, Jorge Cardoso, Qi Dou, Nicola Rieke, Sotirios Tsaftaris
- Sprache Englisch
- Gewicht 254g
- Untertitel 4th MICCAI Workshop, DART 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings
- Größe H235mm x B155mm x T9mm
- Jahr 2022
- EAN 9783031168512
- Format Kartonierter Einband
- ISBN 3031168518
- Veröffentlichung 20.09.2022
- Titel Domain Adaptation and Representation Transfer