Domain Adaptation for Visual Understanding

CHF 137.25
Auf Lager
SKU
S8JGVP3K5I8
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This unique volume reviews the latest advances in domain adaptation in the training of machine learning algorithms for visual understanding, offering valuable insights from an international selection of experts in the field. The text presents a diverse selection of novel techniques, covering applications of object recognition, face recognition, and action and event recognition.

Topics and features: reviews the domain adaptation-based machine learning algorithms available for visual understanding, and provides a deep metric learning approach; introduces a novel unsupervised method for image-to-image translation, and a video segment retrieval model that utilizes ensemble learning; proposes a unique way to determine which dataset is most useful in the base training, in order to improve the transferability of deep neural networks; describes a quantitative method for estimating the discrepancy between the source and target data to enhance image classification performance; presentsa technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation; examines an original interpolation-based approach to address the issue of tracking model degradation in correlation filter-based methods.

This authoritative work will serve as an invaluable reference for researchers and practitioners interested in machine learning-based visual recognition and understanding.


Presents the latest research on domain adaptation for visual understanding Provides perspectives from an international selection of authorities in the field Reviews a variety of applications and techniques

Autorentext

Dr. Richa Singh is a Professor at Indraprastha Institute of Information Technology, Delhi, India. Dr. Mayank Vatsa is a Professor at the same institution. Dr. Vishal M. Patel is an Assistant Professor in the Department of Electrical and Computer Engineering at Johns Hopkins University, Baltimore, MD, USA. Dr. Nalini Ratha is a Research Staff Member at the IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA.



Inhalt

Domain Adaptation for Visual Understanding.- M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning.- XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings.- Improving Transferability of Deep Neural Networks.- Cross Modality Video Segment Retrieval with Ensemble Learning.- On Minimum Discrepancy Estimation for Deep Domain Adaptation.- Multi-Modal Conditional Feature Enhancement for Facial Action Unit Recognition.- Intuition Learning.- Alleviating Tracking Model Degradation Using Interpolation-Based Progressive Updating.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030306700
    • Auflage 1st edition 2020
    • Editor Richa Singh, Nalini Ratha, Vishal M. Patel, Mayank Vatsa
    • Sprache Englisch
    • Genre Anwendungs-Software
    • Größe H241mm x B160mm x T15mm
    • Jahr 2020
    • EAN 9783030306700
    • Format Fester Einband
    • ISBN 3030306704
    • Veröffentlichung 09.01.2020
    • Titel Domain Adaptation for Visual Understanding
    • Gewicht 407g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 156
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470