Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Dual Space
CHF 43.15
Auf Lager
SKU
HRG32VUCR31
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
In mathematics, any vector space, V, has a corresponding dual vector space (or just dual space for short) consisting of all linear functionals on V. Dual vector spaces defined on finite dimensional vector spaces can be used for defining tensors which are studied in tensor algebra. When applied to vector spaces of functions (which typically are infinite-dimensional), dual spaces are employed for defining and studying concepts like measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in the study of functional analysis. There are two types of dual spaces: the algebraic dual space, and the continuous dual space. The algebraic dual space is defined for all vector spaces. When defined for a topological vector space there is a subspace of this dual space, corresponding to continuous linear functionals, which constitutes a continuous dual space. Contents
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130279103
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- Sprache Englisch
- Größe H220mm x B149mm x T13mm
- Jahr 2010
- EAN 9786130279103
- Format Fachbuch
- ISBN 978-613-0-27910-3
- Titel Dual Space
- Untertitel Mathematics, Vector space, Linear functional, Tensor, Tensor algebra, Measure (mathematics), Functional analysis, Topological vector space, Duality (projective geometry), Pontryagin duality
- Gewicht 164g
- Herausgeber Alphascript Publishing
- Anzahl Seiten 96
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung