Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Dynamical Billiards
CHF 56.70
Auf Lager
SKU
R6LIH9H8GT6
Geliefert zwischen Do., 29.01.2026 und Fr., 30.01.2026
Details
High Quality Content by WIKIPEDIA articles! A billiard is a dynamical system in which a particle alternates between motion in a straight line and specular reflections from a boundary. When the particle hits the boundary it reflects from it without loss of speed. Billiard dynamical systems are Hamiltonian idealizations of the game of billiards, but where the region contained by the boundary can have shapes other than rectangular and even be multidimensional. Dynamical billiards may also be studied on non-Euclidean geometries; indeed, the very first studies of billiards established their ergodic motion on surfaces of constant negative curvature. A three-dimensional analogue of such a surface is the holly leaf. The study of billiards which are kept out of a region, rather than being kept in a region, is known as outer billiard theory.The motion of the particle in the billiard is a straight line, with constant energy, between reflections with the boundary (a geodesic if the Riemannian metric of the billiard table is not flat). All reflections are specular: the angle of incidence just before the collision is equal to the angle of reflection just after the collision.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130250799
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- Sprache Englisch
- Größe H220mm x B150mm x T8mm
- Jahr 2009
- EAN 9786130250799
- Format Fachbuch
- ISBN 978-613-0-25079-9
- Titel Dynamical Billiards
- Untertitel Dynamical System, Specular Reflection, Speed, Hamiltonian Mechanics, Cue Sports, Non-Euclidean Geometry, Surface, Curvature, Outer Billiard, Geodesic, Riemannian Manifold, Reflection (Physics)
- Gewicht 213g
- Herausgeber Alphascript Publishing
- Anzahl Seiten 132
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung