EEG Signal Analysis and Classification

CHF 190.80
Auf Lager
SKU
KR5IMJQAL42
Stock 1 Verfügbar
Geliefert zwischen Mi., 31.12.2025 und Do., 01.01.2026

Details

This book presents advanced methodologies in two areas related to electroencephalogram (EEG) signals: detection of epileptic seizures and identification of mental states in brain computer interface (BCI) systems. The proposed methods enable the extraction of this vital information from EEG signals in order to accurately detect abnormalities revealed by the EEG. New methods will relieve the time-consuming and error-prone practices that are currently in use. Common signal processing methodologies include wavelet transformation and Fourier transformation, but these methods are not capable of managing the size of EEG data. Addressing the issue, this book examines new EEG signal analysis approaches with a combination of statistical techniques (e.g. random sampling, optimum allocation) and machine learning methods. The developed methods provide better results than the existing methods. The book also offers applications of the developedmethodologies that have been tested on several real-time benchmark databases.This book concludes with thoughts on the future of the field and anticipated research challenges. It gives new direction to the field of analysis and classification of EEG signals through these more efficient methodologies. Researchers and experts will benefit from its suggested improvements to the current computer-aided based diagnostic systems for the precise analysis and management of EEG signals.

Presents innovative methodologies in two emerging fields, including epileptic seizure detection and mental state identification for brain computer interface Discusses the applications of developed methods in real-time benchmark databases and provides experimental evaluation results to assess the efficacy of such methods Shows researchers and practitioners how to improve the existing systems to increase benefits for medical analysis and management

Inhalt
Electroencephalogram (EEG) and its background.- Significance of EEG signals in medical and health research.- Objectives and structures of the book.- Random sampling in the detection of epileptic EEG signals.- A novel clustering technique for the detection of epileptic seizures.- A statistical framework for classifying epileptic seizure from multi-category EEG signals.- Injecting principal component analysis with the OA scheme in the epileptic EEG signal classification.- Cross-correlation aided logistic regression model for the identification of motor imagery EEG signals in BCI applications.- Modified CC-LR Algorithm for identification of MI based EEG signals.- Improving prospective performance in the MI recognition: LS-SVM with tuning hyper parameters.- Comparative study: Motor area EEG and All-channels EEG.- Optimum allocation aided Naive Bayes based learning process for the detection of MI tasks.- Summary discussions on the methods, future directions and conclusions.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319476520
    • Lesemotiv Verstehen
    • Genre Electrical Engineering
    • Auflage 1st edition 2016
    • Sprache Englisch
    • Anzahl Seiten 272
    • Herausgeber Springer International Publishing
    • Größe H241mm x B160mm x T21mm
    • Jahr 2017
    • EAN 9783319476520
    • Format Fester Einband
    • ISBN 3319476521
    • Veröffentlichung 10.01.2017
    • Titel EEG Signal Analysis and Classification
    • Autor Siuly Siuly , Yanchun Zhang , Yan Li
    • Untertitel Techniques and Applications
    • Gewicht 576g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470