Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Effective Kan Fibrations in Simplicial Sets
Details
This book introduces the notion of an effective Kan fibration, a new mathematical structure which can be used to study simplicial homotopy theory. The main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. Here it is revealed that fundamental properties of ordinary Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, a constructive (explicit) proof is given that effective Kan fibrations are stable under push forward, or fibred exponentials. Further, it is shown that effective Kan fibrations are local, or completely determined by their fibres above representables, and the maps which can be equipped with the structure of an effective Kan fibration are precisely the ordinary Kan fibrations. Hence implicitly, both notions still describe the same homotopy theory. These new results solve an open problem in homotopy type theory and provide the first step toward giving a constructive account of Voevodsky's model of univalent type theory in simplicial sets.
Contributes to the emerging area of homotopy type theory Provides new effective foundations for simplicial homotopy theory Light on prerequisites (only basic category theory is required)
Inhalt
-
- Introduction. - Part I - Types from Moore Paths. - 2. Preliminaries. - 3. An Algebraic Weak Factorisation System from a Dominance. - 4. An Algebraic Weak Factorisation System from a Moore Structure. - 5. The Frobenius Construction. - 6. Mould Squares and Effective Fibrations. - 7. -Types. - Part II Simplicial Sets. - 8. Effective Trivial Kan Fibrations in Simplicial Sets. - 9. Simplicial Sets as a Symmetric Moore Category. - 10. Hyperdeformation Retracts in Simplicial Sets. - 11. Mould Squares in Simplicial Sets. - 12. Horn Squares. - 13. Conclusion.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber Springer International Publishing
- Gewicht 376g
- Untertitel Lecture Notes in Mathematics 2321
- Autor Eric Faber , Benno van den Berg
- Titel Effective Kan Fibrations in Simplicial Sets
- Veröffentlichung 10.12.2022
- ISBN 3031188993
- Format Kartonierter Einband
- EAN 9783031188992
- Jahr 2022
- Größe H235mm x B155mm x T14mm
- Anzahl Seiten 244
- Lesemotiv Verstehen
- Auflage 1st edition 2022
- GTIN 09783031188992