Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Effects of Ignoring Clustered Data Structures in Factor Analysis
Details
In psychiatric research, data for analysis originate principally from two sources: directly from the patients themselves and from interviews conducted by health care professionals. In the latter case, statistical theory indicates that clustering by interviewers or raters needs to be considered when performing any analyses including regression, factor analysis (FA) or item response theory (IRT) modelling of binary or ordinal data. We use simulated data to study the bias of factor analytic estimates and model fit indices when data clustering is fully or partly ignored. Robustness of different estimators, such as maximum likelihood, weighted least squares and Markov chain Monte Carlo is also presented. In the second part, we analyse two real datasets containing responses to the Positive and Negative Syndrome Scale (PANSS) to show the differences when the data are analysed using the correct multilevel approach rather than a traditional aggregated analysis.
Autorentext
Jan Stochl is a Research Associate in the Department of Psychiatry at the University of Cambridge and Associate Professor at Charles University in the Czech Republic. His specialization is in statistical modellingwith latent variables.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659411915
- Sprache Englisch
- Größe H220mm x B150mm x T6mm
- Jahr 2013
- EAN 9783659411915
- Format Kartonierter Einband (Kt)
- ISBN 3659411914
- Veröffentlichung 12.06.2013
- Titel Effects of Ignoring Clustered Data Structures in Factor Analysis
- Autor Jan Stochl
- Untertitel with Applications to Psychiatry
- Gewicht 167g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 100
- Genre Mathematik