Electro-Chemo-Mechanics of Anodic Porous Alumina Nano-Honeycombs: Self-Ordered Growth and Actuation
Details
In this thesis, real-time evolution of the nanopore channel growth and self-ordering process in anodic nanoporous alumina are simulated on the basis of an established kinetics model. The simulation results were in accordance with the experiments on the (i) growth sustainability of pore channels guided by pre-patterns; and (ii) substrate grain orientation dependence on self-ordering. In addition, a new fabrication method for the rapid synthesis of highly self-ordered nanoporous alumina is established, based on a systematic search for the self-ordering conditions in experiments. Lastly, it reports on a novel surface-charge induced strain in nanoporous alumina-aluminium foils, which indicates that nanoporous alumina can be used as a new type of actuating material in micro-actuator applications.
Nominated by the University of Hong Kong as an outstanding thesis in its field Illustrates the modeling and simulation of self-ordering processes in nanoporous alumina Explains the rapid synthesis of highly-ordered nanoporous alumina Includes supplementary material: sn.pub/extras
Inhalt
Research Background and Motivation.- Establishment of a Kinetics Model.- Numerical Simulation Based on the Established Kinetics Model.- Experimental Verification I: Growth Sustainability of Nanopore Channels Guided with Pre-Patterns.- Experimental Verification II: Substrate Grain Orientation Dependent Self-Ordering.- Quantitative Evaluation of Self-Ordering in Anodic Porous Alumina.- Fast Fabrication of Self-Ordered Anodic Porous Alumina on Oriented Aluminum Grains.- Charge-Induced Reversible Bending in Anodic Porous Alumina-Aluminum Composites.- Chemo-Mechanical Softening during In Situ Nanoindentation of Anodic Porous Alumina with Anodization Processing.- Conclusions and Future Work.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber Springer Berlin Heidelberg
- Gewicht 612g
- Untertitel Springer Theses
- Autor Chuan Cheng
- Titel Electro-Chemo-Mechanics of Anodic Porous Alumina Nano-Honeycombs: Self-Ordered Growth and Actuation
- Veröffentlichung 09.06.2015
- ISBN 3662472678
- Format Fester Einband
- EAN 9783662472675
- Jahr 2015
- Größe H241mm x B160mm x T22mm
- Anzahl Seiten 296
- Lesemotiv Verstehen
- Auflage 2015
- GTIN 09783662472675