Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Electromagnetic Brain Imaging
Details
This graduate level textbook provides a coherent introduction to the body of main-stream algorithms used in electromagnetic brain imaging, with specific emphasis on novel Bayesian algorithms. It helps readers to more easily understand literature in biomedical engineering and related fields and be ready to pursue research in either the engineering or the neuroscientific aspects of electromagnetic brain imaging. This textbook will not only appeal to graduate students but all scientists and engineers engaged in research on electromagnetic brain imaging.
Provides a theoretical framework for source imaging methodology Specific focus on Bayesian algorithms Unique approach to the recent advances Includes supplementary material: sn.pub/extras
Inhalt
Introduction to Electromagnetic Brain Imaging.- Minimum-Norm-Based Source Imaging Algorithms.- Adaptive Beamformers.- Sparse Bayesian (Champagne) Algorithm.- Bayesian Factor Analysis: A Versatile Framework.- A Unified Bayesian Framework for MEG/EEG Source.- Source-Space Connectivity Analysis Using Imaginary.- Estimation of Causal Networks: Source-Space Causality Analysis.- Detection of PhaseAmplitude Coupling in MEG Source Space: An Empirical Study.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Autor Srikantan S. Nagarajan , Kensuke Sekihara
- Titel Electromagnetic Brain Imaging
- Veröffentlichung 20.03.2015
- ISBN 3319149466
- Format Fester Einband
- EAN 9783319149462
- Jahr 2015
- Größe H241mm x B160mm x T21mm
- Untertitel A Bayesian Perspective
- Gewicht 594g
- Auflage 2015
- Genre Medizin
- Lesemotiv Verstehen
- Anzahl Seiten 284
- Herausgeber Springer International Publishing
- GTIN 09783319149462