Elementare Galois-Theorie
Details
Warum ist die Quadratur des Kreises, warum ist die Winkeldreiteilung mit Zirkel und Lineal unmöglich? Warum gibt es allgemeine Lösungsformeln für Polynomgleichungen vom Grad 2, 3 und 4, aber nicht für Grad 5 oder höher? Dieses Lehrbuch behandelt solche klassischen Fragen elementar im Kontext der galoisschen Theorie. Es liefert somit einen klassischen Einstieg und geht dabei gleichzeitig auf Anwendungen ein. Dabei wird konsequent der Standpunkt eines konstruktiven Mathematikers eingenommen: Um die Existenz eines mathematischen Objekts zu beweisen, wird immer eine algorithmische Konstruktion dieses Objekts angegeben. Einige Aussagen sind daher etwas vorsichtiger formuliert, als es klassischerweise üblich ist; einige Beweise sind aufwändiger geführt, dafür aber klarer und nachvollziehbarer. Abstrakte Theorien und Definitionen werden aus konkreten Problemstellungen und Lösungen abgeleitet und können somit besser verstanden und gewürdigt werden. Der Stoff dieses Bandes kann im Rahmen einer einsemestrigen Vorlesung Algebra direkt zu Beginn des Mathematikstudiums behandelt werden und ist für Studienanfänger im Bachelor und Lehramt gleichermaßen geeignet.
Die zentralen Aussagen werden bereits innerhalb des Textes zusammenfassend und prägnant dargestellt, der Leser wird so zum Innehalten und Reflektieren angeregt und kann Inhalte gezielt wiederholen. Darüber hinaus gibt es am Ende jedes Kapitels eine Kurzzusammenfassung, mit der noch einmal Schritt für Schritt die wesentlichen Argumente nachvollzogen werden können, sowie zahlreiche Übungsaufgaben mit ansteigendem Schwierigkeitsgrad.
Autorentext
Marc Nieper-Wißkirchen studierte Mathematik und Physik in Köln und promovierte dort in algebraischer Geometrie. Anschließend war er Juniorprofessor in Mainz. Seit 2008 ist er Lehrstuhlinhaber für Algebra und Zahlentheorie an der Universität Augsburg. Er interessiert sich auch für Informatik, insbesondere für algorithmische Umsetzungen mathematischer Verfahren.
Inhalt
- Einleitung.- 2. Der Fundamentalsatz der Algebra.- 3. Unmöglichkeit der Quadratur des Kreises.- 4. Unmöglichkeit der Würfelverdoppelung und der Winkeldreiteilung.- 5. Über die Konstruierbarkeit regelmäßiger n-Ecke.- 6. Über die Auflösbarkeit von Polynomgleichungen.- A Konstruktive Mathematik.- B Lineare Algebra.- C Analysis.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783662609330
- Auflage 20001 A. 1. Auflage 2020
- Sprache Deutsch
- Genre Geometrie
- Lesemotiv Verstehen
- Größe H240mm x B168mm x T18mm
- Jahr 2020
- EAN 9783662609330
- Format Kartonierter Einband
- ISBN 978-3-662-60933-0
- Veröffentlichung 02.05.2020
- Titel Elementare Galois-Theorie
- Autor Marc Nieper-Wißkirchen
- Untertitel Ein konstruktiver Zugang
- Gewicht 539g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 304