Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Elliptic Boundary Value Problems and Construction of Lp-Strong Feller Processes with Singular Drift and Reflection
Details
Benedict Baur presents modern functional analytic methods for construction and analysis of Feller processes in general and diffusion processes in particular. Topics covered are: Construction of Lp-strong Feller processes using Dirichlet form methods, regularity for solutions of elliptic boundary value problems, construction of elliptic diffusions with singular drift and reflection, Skorokhod decomposition and applications to Mathematical Physics like finite particle systems with singular interaction. Emphasize is placed on the handling of singular drift coefficients, as well as on the discussion of point wise and path wise properties of the constructed processes rather than just the quasi-everywhere properties commonly known from the general Dirichlet form theory.
Publication in the field of mathematical sciences Includes supplementary material: sn.pub/extras
Autorentext
Benedict Baur has done his doctor's degree at the University of Kaiserslautern in topics on Stochastics and Functional Analysis.
Inhalt
Introduction.- Construction of Lp-Strong Feller Processes.- Elliptic Regularity up to the Boundary.- Construction of Elliptic Diffusions.- Applications.- Construction of the Local Time and Skorokhod Decomposition.- Appendix.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783658058289
- Sprache Englisch
- Auflage 2014
- Größe H210mm x B148mm x T12mm
- Jahr 2014
- EAN 9783658058289
- Format Kartonierter Einband
- ISBN 3658058285
- Veröffentlichung 08.05.2014
- Titel Elliptic Boundary Value Problems and Construction of Lp-Strong Feller Processes with Singular Drift and Reflection
- Autor Benedict Baur
- Gewicht 276g
- Herausgeber Springer Fachmedien Wiesbaden
- Anzahl Seiten 208
- Lesemotiv Verstehen
- Genre Mathematik