Embedding Privacy in Data Mining

CHF 68.75
Auf Lager
SKU
I1RL5B5D2GO
Stock 1 Verfügbar
Geliefert zwischen Mi., 24.12.2025 und Do., 25.12.2025

Details

In recent years, Privacy Preserving Data Mining has emerged as a very active research area. This field of research studies how knowledge or patterns can be extracted from large data stores while maintaining commercial or legislative privacy constraints. Quite often, these constraints pertain to individuals represented in the data stores. While data collectors strive to derive new insights that would allow them to improve customer service and increase sales, consumers are concerned about the vast quantities of information collected about them and how this information is put to use. The question how these two contrasting goals can be reconciled is the focus of this work. We seek ways to improve the tradeoff between privacy and utility when mining data. We address this tradeoff problem by considering the privacy and algorithmic requirements simultaneously, in the context of two privacy models that attracted considerable attention in recent years, k-anonymity and differential privacy. Our analysis and experimental evaluations confirm that algorithmic decisions made with privacy considerations in mind may have a profound impact on the accuracy of the resulting data mining models.

Autorentext

Arik Friedman, PhD: Studied Computer Science at the Technion, Israel Institute of Technology, and MBA with specialization in Technology and Information Systems at Tel-Aviv University. His research interests include privacy, computer security, data mining and machine learning, and how all the above can be combined.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783847303633
    • Anzahl Seiten 148
    • Genre Allgemein & Lexika
    • Auflage Aufl.
    • Herausgeber LAP LAMBERT Academic Publishing
    • Gewicht 238g
    • Untertitel Designing Algorithms with Better Privacy and Utility Tradeoffs
    • Größe H220mm x B150mm x T9mm
    • Jahr 2011
    • EAN 9783847303633
    • Format Kartonierter Einband
    • ISBN 3847303635
    • Veröffentlichung 12.12.2011
    • Titel Embedding Privacy in Data Mining
    • Autor Arik Friedman , Ran Wolff , Assaf Schuster
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470