Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Engineering and Management of Data Science, Analytics, and AI/ML Projects
Details
This book presents a dual perspective on modern research and praxis on Data Science, Analytics, and AI/Machine Learning (DSA-AI/ML) system with small or big data. Consequently, potential readersacademics, researchers and practitioners interested in the systematic development and implementation of DSA-AI/ML systemscan be benefited with the high-quality conceptual and empirical research chapters focused on:
Foundations, Development Platforms, and Tools on Engineering and Management of DSA-AI/ML Projects:
- DSA-AI/ML reference architectures.
- Data visualization principles for DSA-AI/ML.
- Federated Learning in large-scale DSA-AI/ML systems.
Achievements, Challenges, Trends, and Future Research Directions on DSA-AI/ML Projects:
- Large multimodal model-based simulation game for DSA-AI/ML systems.
- Value stream analysis and design applied to DSA-AI/ML systems.
- Quality management 4.0 and AI for DSA-AI/ML systems.
Hence, this research-oriented co-edited book contributes to achieve the systematic development and implementation of Data Science, Analytics, and AI/ML systems.
Inhalt
1.A Review of Main Non-Proprietary Domain- Independent Data Science Analytics AI/ML Reference Architectures a dual ISO/IEC/IEEE 42010 and IT Service Design Approach.- 2.Data Visualization in the Era of Data Science: a review.- 3.Requirements for using Federated Learning in Manufacturing Supply Chains.- 4.Large Multimodal Model-Based Simulation Game as a Socio-Technical System for Value Stream Analysis and Design.- 5.A Data-driven Clustering Approach for Assessing Service Performance of Brand Chains' Branches in the Food Service Industry Data Analytics Systems.- 6.Integrating Quality Management 4.0 with AI and Machine Learning.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783032068880
- Genre Technology Encyclopedias
- Editor Manuel Mora, Jorge Marx Gómez, Fen Wang, Hector A. Duran-Limon
- Lesemotiv Verstehen
- Anzahl Seiten 156
- Herausgeber Springer
- Größe H241mm x B160mm x T15mm
- Jahr 2025
- EAN 9783032068880
- Format Fester Einband
- ISBN 3032068886
- Veröffentlichung 16.11.2025
- Titel Engineering and Management of Data Science, Analytics, and AI/ML Projects
- Untertitel Foundations, Models, Frameworks, Architectures, Standards, Processes, Practices, Platforms and Tools for Small and Big Data
- Gewicht 405g
- Sprache Englisch