Engineering Applications of Modern Metaheuristics

CHF 202.20
Auf Lager
SKU
AQTJB34DK43
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book is a collection of various methodologies that make it possible for metaheuristics and hyper-heuristics to solve problems that occur in the real world. This book contains chapters that make use of metaheuristics techniques. The application fields range from image processing to transmission power control, and case studies and literature reviews are included to assist the reader. Furthermore, some chapters present cutting-edge methods for load frequency control and IoT implementations. In this sense, the book offers both theoretical and practical contents in the form of metaheuristic algorithms. The researchers used several stochastic optimization methods in this book, including evolutionary algorithms and Swarm-based algorithms. The chapters were written from a scientific standpoint. As a result, the book is primarily aimed at undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics, but it can also be used in courses on Artificial Intelligence, among other things. Similarly, the material may be beneficial to research in evolutionary computation and artificial intelligence communities.


Provides the reader with the most representative optimization tools used for scientific and engineering problems Explains the algorithms used, the selected problem, and the implementation Provides practical examples, comparisons, and experimental results

Inhalt
Empirical Comparison of Heuristic Optimisation Methods for Automated Car Setup.- Metaheuristic algorithms in IoT: Optimized Edge Node Localization.- Jaya algorithm versus differential evolution: a comparative case study on optic disc localization in eye fundus images.- Minimum transmission power control for the Internet of Things with swarm intelligence algorithms.- An Enhanced Gradient Based Optimized Controller for Load Frequency Control of a Two Area Automatic Generation Control System.- A meta-heuristic algorithm based on the happiness model.- Application of Metaheuristic Techniques for Enhancing the Financial Profitability of Wind Power Generation Systems.- Optimization of Demand Response.- Fitting curves of ruminal degradation using a metaheuristic approach.- Optimizing a Real Case Assembly Line Balancing Problem Using Various Techniques.- Multi-Circle Detection Using Multimodal Optimization.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031168314
    • Genre Technology Encyclopedias
    • Auflage 1st edition 2023
    • Editor Taymaz Akan, Diego Oliva, A. ima Etaner-Uyar, Ahmed M. Anter
    • Lesemotiv Verstehen
    • Anzahl Seiten 216
    • Herausgeber Springer International Publishing
    • Größe H241mm x B160mm x T17mm
    • Jahr 2022
    • EAN 9783031168314
    • Format Fester Einband
    • ISBN 3031168313
    • Veröffentlichung 05.12.2022
    • Titel Engineering Applications of Modern Metaheuristics
    • Untertitel Studies in Computational Intelligence 1069
    • Gewicht 534g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470