Enhanced Intrusion Detection System Using Machine Learning Techniques

CHF 80.60
Auf Lager
SKU
ONG3ROLSSUL
Stock 1 Verfügbar
Geliefert zwischen Mi., 07.01.2026 und Do., 08.01.2026

Details

This book provides a machine learning technique was proposed to identify the network attacks. IDS is an important technology that monitors the network traffic and identifies the network intrusions. The primary objective of this rule based intrusion detection system detects the errors with high detection rate and low false alarm rate. This book contains five chapters with including programs. Chapter 1: Covers Fundamental, motivation and Problems in IDS. Chapter 2: Discusses IDS Classification and methods. Chapter 3: Explains Development of Intrusion Detection System using Rule based Decision Tree (C4.5) Algorithm. Chapter 4: Explains Modeling of Intrusion Detection System using Rule based Genetic Algorithm. Chapter 5: Conclusions and Future work.

Autorentext

Dr.Shaik Akbar, Professor in CSE Department, PSCMR College of Engineering and Technology, Vijayawada, A.P, INDIA. He had an experience of teaching over a decade and IT expertise in Java & OOP Languages and Software Design. His IT Expertise in overseas as softwareengineer in USA; He is a member of many professional bodies like IEEE, CSI,IASA, IAENG

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786202096089
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 164
    • Genre IT Encyclopedias
    • Gewicht 262g
    • Größe H220mm x B150mm x T11mm
    • Jahr 2017
    • EAN 9786202096089
    • Format Kartonierter Einband
    • ISBN 620209608X
    • Veröffentlichung 08.12.2017
    • Titel Enhanced Intrusion Detection System Using Machine Learning Techniques
    • Autor Akbar Shaik
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470