Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Enhanced Machine Learning Algorithm: Big Data Perspective
Details
We are living in a big data world where enormous data as a flood is brimming from all around to spawn Data Ocean. These data are fascinating if handled appropriately or else it is nothing more than trash. An ordinary algorithm is not competent in dealing out this mammoth dataset, as they are programmed to work based on the instruction. At present machine learning and data mining is gaining esteem as it is consists of a wide range of robust algorithms, which is capable of dispensation big data. The main aspiration of this work is to recognize the performances hurdle of machine learning classification algorithm due to complexity added by imbalance dataset for training purpose. The main contribution of this work is to generate a hybridization pre-processing and resampling technique which will able to reduce the complexity due to an imbalance big datasets and thus enhances performances of ML classification algorithms during assembling a precise predictive model. The algorithm proposed in this book, Hybridization Preprocessing and Resampling Technique (HPRT) is an enhanced technique, designed to reduce the complexity of dataset.
Autorentext
El Dr. Prity Vijay trabaja como Científico de Datos en Zessta Software Pvt. Limited, Hydrabad (India) y el Dr. Bright Keswani trabaja como Profesor en el Departamento de Ciencias Informáticas e Ingeniería de la Universidad Suresh Gyan Vihar, Jaipur (India).
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Anzahl Seiten 124
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 203g
- Autor Prity Vijay , Bright Keswani
- Titel Enhanced Machine Learning Algorithm: Big Data Perspective
- Veröffentlichung 15.06.2020
- ISBN 6202565926
- Format Kartonierter Einband
- EAN 9786202565929
- Jahr 2020
- Größe H220mm x B150mm x T9mm
- GTIN 09786202565929