Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Enhanced Machine Learning and Data Mining Methods for Analysing Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data
Details
Philipp Bergmeir works on the development and enhancement of data mining and machine learning methods with the aim of analysing automatically huge amounts of load spectrum data that are recorded for large hybrid electric vehicle fleets. In particular, he presents new approaches for uncovering and describing stress and usage patterns that are related to failures of selected components of the hybrid power-train.
New Approaches for Identifying Harmful Vehicle Usage Patterns Includes supplementary material: sn.pub/extras
Autorentext
Philipp Bergmeir did a PhD in the doctoral program "Promotionskolleg HYBRID" at the Institute for Internal Combustion Engines and Automotive Engineering, University of Stuttgart, in cooperation with the Esslingen University of Applied Sciences and a well-known vehicle manufacturer. Currently, he is working as a data scientist in the automotive industry.
Inhalt
Classifying Component Failures of a Vehicle Fleet.- Visualising Different Kinds of Vehicle Stress and Usage.- Identifying Usage and Stress Patterns in a Vehicle Fleet.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783658203665
- Lesemotiv Verstehen
- Genre Mechanical Engineering
- Auflage 1st edition 2018
- Sprache Englisch
- Anzahl Seiten 200
- Herausgeber Springer VS
- Größe H210mm x B148mm x T12mm
- Jahr 2017
- EAN 9783658203665
- Format Kartonierter Einband
- ISBN 3658203668
- Veröffentlichung 08.12.2017
- Titel Enhanced Machine Learning and Data Mining Methods for Analysing Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data
- Autor Philipp Bergmeir
- Untertitel Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart
- Gewicht 266g