Ensemble Selection for Cancer Diagnosis

CHF 29.55
Auf Lager
SKU
8INPI0IDPI8
Stock 1 Verfügbar
Shipping Kostenloser Versand ab CHF 50
Geliefert zwischen Fr., 10.10.2025 und Mo., 13.10.2025

Details

Microarrays are known for their wide use in providing expression profiles for thousands of genes. Gene expression profiles provide a rich information for cancer diagnosis. Selecting an efficient classifier is a challenging task due to the presence of several classifier types. Previous studies showed that ensembles of classifiers are more efficient than single classifiers in cancer samples classification. However, designing an efficient ensemble has faced a number of challenges such as the large space of ensembles, increasing the diversity between the ensemble members, and the use of an efficient method to combine the decisions of the ensemble members. In this book, a novel ensemble selection algorithm is proposed. The proposed algorithm addresses the main challenges of the ensemble selection problem taking into consideration the special nature of microarray datasets. A set of experiments has been performed to study the robustness of ensembles of classifiers. This study shows that ensembles of classifiers are more robust than single classifiers. The study also shows that the proposed algorithm performs betten than other ensemble selection algorithms in the literature.

Autorentext

Masters of Science in Bioinformatics from The Computer Science and Systems Engineering Department, Faculty of Engineering, Alexandria University & HPC System Administrator at Bibliotheca Alexanrina, Alexandria, Egypt.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber LAP LAMBERT Academic Publishing
    • Gewicht 107g
    • Untertitel A Novel Ensemble Selection Algorithm for Cancer Diagnosis Using Microarray Datasets
    • Autor Mohammed Gaafar , Mohamed A. Ismail , Noha A. Yousri
    • Titel Ensemble Selection for Cancer Diagnosis
    • Veröffentlichung 13.09.2013
    • ISBN 3659467448
    • Format Kartonierter Einband
    • EAN 9783659467448
    • Jahr 2013
    • Größe H220mm x B150mm x T4mm
    • Anzahl Seiten 60
    • GTIN 09783659467448

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.