Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Entropy Guided Transformation Learning: Algorithms and Applications
Details
Entropy Guided Transformation Learning: Algorithms and Applications (ETL) presents a machine learning algorithm for classification tasks. ETL generalizes Transformation Based Learning (TBL) by solving the TBL bottleneck: the construction of good template sets. ETL automatically generates templates using Decision Tree decomposition.
The authors describe ETL Committee, an ensemble method that uses ETL as the base learner. Experimental results show that ETL Committee improves the effectiveness of ETL classifiers. The application of ETL is presented to four Natural Language Processing (NLP) tasks: part-of-speech tagging, phrase chunking, named entity recognition and semantic role labeling. Extensive experimental results demonstrate that ETL is an effective way to learn accurate transformation rules, and shows better results than TBL with handcrafted templates for the four tasks. By avoiding the use of handcrafted templates, ETL enables the use of transformation rules to a greater range of tasks.
Suitable for both advanced undergraduate and graduate courses, Entropy Guided Transformation Learning: Algorithms and Applications provides a comprehensive introduction to ETL and its NLP applications.
Detailed explanation of the Entropy Guided Transformation Learning algorithm Detailed explanation of how to create ensembles of ETL classifiers Explains how to apply ETL to four NLP problems Includes supplementary material: sn.pub/extras
Klappentext
Entropy Guided Transformation Learning: Algorithms and Applications (ETL) presents a machine learning algorithm for classification tasks. ETL generalizes Transformation Based Learning (TBL) by solving the TBL bottleneck: the construction of good template sets. ETL automatically generates templates using Decision Tree decomposition.
The authors describe ETL Committee, an ensemble method that uses ETL as the base learner. Experimental results show that ETL Committee improves the effectiveness of ETL classifiers. The application of ETL is presented to four Natural Language Processing (NLP) tasks: part-of-speech tagging, phrase chunking, named entity recognition and semantic role labeling. Extensive experimental results demonstrate that ETL is an effective way to learn accurate transformation rules, and shows better results than TBL with handcrafted templates for the four tasks. By avoiding the use of handcrafted templates, ETL enables the use of transformation rules to a greater range of tasks.
Suitable for both advanced undergraduate and graduate courses, Entropy Guided Transformation Learning: Algorithms and Applications provides a comprehensive introduction to ETL and its NLP applications.
Inhalt
Preface.- Acknowledgements.- Acronyms.- Part I Entropy Guided Transformation Learning: Algorithms.- Introduction.- Entropy Guided Transformation Learning.- ETL Committee.- Part II Entropy Guided Transformation Learning: Applications.- General ETL Modeling for NLP Tasks.- Part-of-Speech Tagging.- Phrase Chunking.- Named Entity Recognition.- Semantic Role Labeling.- Conclusions.- Appendices.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781447129776
- Auflage 2012
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H235mm x B155mm x T6mm
- Jahr 2012
- EAN 9781447129776
- Format Kartonierter Einband
- ISBN 1447129776
- Veröffentlichung 16.03.2012
- Titel Entropy Guided Transformation Learning: Algorithms and Applications
- Autor Ruy Luiz Milidiú , Cícero Nogueira Dos Santos
- Untertitel SpringerBriefs in Computer Science
- Gewicht 154g
- Herausgeber Springer London
- Anzahl Seiten 92
- Lesemotiv Verstehen