Environment Learning for Indoor Mobile Robots

CHF 144.80
Auf Lager
SKU
5MJVGL0L8QH
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mo., 20.10.2025 und Di., 21.10.2025

Details

This monograph covers theoretical aspects of simultaneous localization and map building for mobile robots, such as estimation stability, nonlinear models for the propagation of uncertainties, temporal landmark compatibility, as well as issues pertaining the coupling of control and SLAM. One of the most relevant topics covered in this monograph is the theoretical formalism of partial observability in SLAM. The authors show that the typical approach to SLAM using a Kalman filter results in marginal filter stability, making the final reconstruction estimates dependant on the initial vehicle estimates. However, by anchoring the map to a fixed landmark in the scene, they are able to attain full observability in SLAM, with reduced covariance estimates. This result earned the first author the EURON Georges Giralt Best PhD Award in its fourth edition, and has prompted the SLAM community to think in new ways to approach the mapping problem. For example, by creating local maps anchored on a landmark, or on the robot initial estimate itself, and then using geometric relations to fuse local maps globally. This monograph is appropriate as a text for an introductory estimation-theoretic approach to the SLAM problem, and as a reference book for people who work in mobile robotics research in general.


Inhalt
Simultaneous Localization and Map Building.- Marginal Filter Stability.- Suboptimal Filter Stability.- Unscented Transformation of Vehicle States.- Simultaneous Localization, Control and Mapping.- A: The Kalman Filter.- B: Concepts from Linear Algebra.- C: Sigma Points.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642069314
    • Genre Elektrotechnik
    • Auflage Softcover reprint of hardcover 1st edition 2006
    • Sprache Englisch
    • Lesemotiv Verstehen
    • Anzahl Seiten 152
    • Größe H235mm x B155mm x T9mm
    • Jahr 2010
    • EAN 9783642069314
    • Format Kartonierter Einband
    • ISBN 3642069312
    • Veröffentlichung 30.11.2010
    • Titel Environment Learning for Indoor Mobile Robots
    • Autor Alberto Sanfeliu , Juan Andrade Cetto
    • Untertitel A Stochastic State Estimation Approach to Simultaneous Localization and Map Building
    • Gewicht 242g
    • Herausgeber Springer Berlin Heidelberg

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.