Equidistribution and Counting Under Equilibrium States in Negative Curvature and Trees

CHF 190.60
Auf Lager
SKU
2M39FFK8LC2
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

This book provides a complete exposition of equidistribution and counting problems weighted by a potential function of common perpendicular geodesics in negatively curved manifolds and simplicial trees. Avoiding any compactness assumptions, the authors extend the theory of Patterson-Sullivan, Bowen-Margulis and Oh-Shah (skinning) measures to CAT(-1) spaces with potentials. The work presents a proof for the equidistribution of equidistant hypersurfaces to Gibbs measures, and the equidistribution of common perpendicular arcs between, for instance, closed geodesics. Using tools from ergodic theory (including coding by topological Markov shifts, and an appendix by Buzzi that relates weak Gibbs measures and equilibrium states for them), the authors further prove the variational principle and rate of mixing for the geodesic flow on metric and simplicial treesagain without the need for any compactness or torsionfree assumptions.


In a series of applications, using the Bruhat-Tits trees over non-Archimedean local fields, the authors subsequently prove further important results: the Mertens formula and the equidistribution of Farey fractions in function fields, the equidistribution of quadratic irrationals over function fields in their completions, and asymptotic counting results of the representations by quadratic norm forms.


One of the book's main benefits is that the authors provide explicit error terms throughout. Given its scope, it will be of interest to graduate students and researchers in a wide range of fields, for instance ergodic theory, dynamical systems, geometric group theory, discrete subgroups of locally compact groups, and the arithmetic of function fields.


Introduces innovative ergodic techniques to Diophantine approximation in non-Archimedean local fields Gives numerous first published error terms in geometric counting and equidistribution problems Bridges the gap between the equidistribution and counting results with potentials on negatively curved manifolds and the ones without potential on trees

Zusammenfassung
"The work under review is a beautiful and very thorough exploration ... . The theorems are stated in great generality, and whenever possible, with explicit error terms in asymptotics of counting/equidistribution, which is very useful in applications." (Jayadev S. Athreya, Mathematical Reviews, April, 2021)

Inhalt
Introduction.- Negatively curved geometry.- Potentials, critical exponents and Gibbs cocycles.- Patterson-Sullivan and Bowen-Margulis measures with potential on CAT(-1) spaces.- Symbolic dynamics of geodesic flows on trees.- Random walks on weighted graphs of groups.- Skinning measures with potential on CAT(-1) spaces.- Explicit measure computations for simplicial trees and graphs of groups.- Rate of mixing for the geodesic flow.- Equidistribution of equidistant level sets to Gibbs measures.- Equidistribution of common perpendicular arcs.- Equidistribution and counting of common perpendiculars in quotient spaces.- Geometric applications.- Fields with discrete valuations.- Bruhat-Tits trees and modular groups.- Rational point equidistribution and counting in completed function fields.- Equidistribution and counting of quadratic irrational points in non-Archimedean local fields.- Counting and equidistribution of crossratios.- Counting and equidistribution of integral representations by quadratic norm forms.- A - A weak Gibbs measure is the unique equilibrium, by J. Buzzi.- List of Symbols.- Index.- Bibliography.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030183172
    • Sprache Englisch
    • Auflage 1st edition 2019
    • Größe H235mm x B155mm x T23mm
    • Jahr 2021
    • EAN 9783030183172
    • Format Kartonierter Einband
    • ISBN 3030183173
    • Veröffentlichung 26.08.2021
    • Titel Equidistribution and Counting Under Equilibrium States in Negative Curvature and Trees
    • Autor Anne Broise-Alamichel , Frédéric Paulin , Jouni Parkkonen
    • Untertitel Applications to Non-Archimedean Diophantine Approximation
    • Gewicht 639g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 424
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38