Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Essays on Using High-Frequency Data in Empirical Asset Pricing Models
Details
This dissertation explores using high-frequency data in empirical asset pricing models. It includes three chapters. The first chapter provides a survey on the use, analysis, and application of high-frequency data. I concentrate on the research using intraday observations on volatility measurement and forecast evaluation, especially after the realized volatility approach introduced by Andersen and Bollerslev (1998). The second chapter explores how to estimate betas from high-frequency data. I extend the market model and construct a consistent estimator of the security beta based on lead, lag and contemporaneous betas from intraday returns. In the third chapter, I consider the problem faced by a professional investment manager who wants to track the return of the S&P 500 index with 30 DJIA stocks. I investigate that under which circumstances, there is benefit in using high-frequency returns, rather than daily returns to estimate the conditional covariance matrix.
Autorentext
Dr. Qianqiu Liu received his B.S. in Mathematics, M.S. in Statistics from Wuhan University, China, and Ph.D. in Finance from Kellogg School of Management, Northwestern University. He has been with the Shidler College of Business, University of Hawaii at Manoa as an assistant professor of finance since August 2003.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639222265
- Sprache Englisch
- Größe H220mm x B220mm
- Jahr 2013
- EAN 9783639222265
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-22226-5
- Titel Essays on Using High-Frequency Data in Empirical Asset Pricing Models
- Autor Qianqiu Liu
- Untertitel Application of High-Frequency Data in Finance
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 128
- Genre Wirtschaft