Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Estimation and Testing Under Sparsity
Details
Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.
Starting with the popular Lasso method as its prime example, the book then extends to a broad family of estimation methods for high-dimensional data A theoretical basis for sparsity-inducing methods is provided, together with ways to build confidence intervals and tests The focus is on common features of methods for high-dimensional data and, as such, a potential starting point is given for the analysis of other methods not treated in the book
Inhalt
1 Introduction.- The Lasso.- 3 The square-root Lasso.- 4 The bias of the Lasso and worst possible sub-directions.- 5 Confidence intervals using the Lasso.- 6 Structured sparsity.- 7 General loss with norm-penalty.- 8 Empirical process theory for dual norms.- 9 Probability inequalities for matrices.- 10 Inequalities for the centred empirical risk and its derivative.- 11 The margin condition.- 12 Some worked-out examples.- 13 Brouwer's fixed point theorem and sparsity.- 14 Asymptotically linear estimators of the precision matrix.- 15 Lower bounds for sparse quadratic forms.- 16 Symmetrization, contraction and concentration.- 17 Chaining including concentration.- 18 Metric structure of convex hulls.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319327730
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2016
- Anzahl Seiten 292
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T16mm
- Jahr 2016
- EAN 9783319327730
- Format Kartonierter Einband
- ISBN 3319327739
- Veröffentlichung 29.06.2016
- Titel Estimation and Testing Under Sparsity
- Autor Sara van de Geer
- Untertitel cole d't de Probabilits de Saint-Flour XLV - 2015
- Gewicht 446g
- Sprache Englisch