Estimation and Testing Under Sparsity

CHF 74.75
Auf Lager
SKU
1C0524DV9EM
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Do., 06.11.2025 und Fr., 07.11.2025

Details

Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.

Starting with the popular Lasso method as its prime example, the book then extends to a broad family of estimation methods for high-dimensional data A theoretical basis for sparsity-inducing methods is provided, together with ways to build confidence intervals and tests The focus is on common features of methods for high-dimensional data and, as such, a potential starting point is given for the analysis of other methods not treated in the book

Inhalt
1 Introduction.- The Lasso.- 3 The square-root Lasso.- 4 The bias of the Lasso and worst possible sub-directions.- 5 Confidence intervals using the Lasso.- 6 Structured sparsity.- 7 General loss with norm-penalty.- 8 Empirical process theory for dual norms.- 9 Probability inequalities for matrices.- 10 Inequalities for the centred empirical risk and its derivative.- 11 The margin condition.- 12 Some worked-out examples.- 13 Brouwer's fixed point theorem and sparsity.- 14 Asymptotically linear estimators of the precision matrix.- 15 Lower bounds for sparse quadratic forms.- 16 Symmetrization, contraction and concentration.- 17 Chaining including concentration.- 18 Metric structure of convex hulls.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319327730
    • Lesemotiv Verstehen
    • Genre Maths
    • Auflage 1st edition 2016
    • Anzahl Seiten 292
    • Herausgeber Springer International Publishing
    • Größe H235mm x B155mm x T16mm
    • Jahr 2016
    • EAN 9783319327730
    • Format Kartonierter Einband
    • ISBN 3319327739
    • Veröffentlichung 29.06.2016
    • Titel Estimation and Testing Under Sparsity
    • Autor Sara van de Geer
    • Untertitel cole d't de Probabilits de Saint-Flour XLV - 2015
    • Gewicht 446g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470