Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Evaluation of Text Summaries Based on Linear Optimization of Content Metrics
Details
This book provides a comprehensive discussion and new insights about linear optimization of content metrics to improve the automatic Evaluation of Text Summaries (ETS). The reader is first introduced to the background and fundamentals of the ETS. Afterward, state-of-the-art evaluation methods that require or do not require human references are described. Based on how linear optimization has improved other natural language processing tasks, we developed a new methodology based on genetic algorithms that optimize content metrics linearly. Under this optimization, we propose SECO-SEVA as an automatic evaluation metric available for research purposes. Finally, the text finishes with a consideration of directions in which automatic evaluation could be improved in the future. The information provided in this book is self-contained. Therefore, the reader does not require an exhaustive background in this area. Moreover, we consider this book the first one that deals with the ETS in depth.
Introduces the reader to the background and fundamentals of the Evaluation of Text Summaries (ETS) Provides state-of-the-art studies and new methodologies for improving the ETS Shows the design of experiments that combine evaluation metrics for the ETS
Inhalt
Introduction.- Background of the ETS.- Fundamentals of the ETS.- State-of-the-art Automatic Evaluation Methods.- A Novel Methodology based on Linear Optimization of Metrics for the ETS.- Experimenting with Linear Optimization of Metrics for Single-document Summarization Evaluation.- Experimenting with Linear Optimization of Metrics for Multi-document Summarization Evaluation.- Conclusions and future considerations for the ETS.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031072130
- Genre Technology Encyclopedias
- Auflage 1st edition 2022
- Lesemotiv Verstehen
- Anzahl Seiten 232
- Herausgeber Springer International Publishing
- Größe H241mm x B160mm x T19mm
- Jahr 2022
- EAN 9783031072130
- Format Fester Einband
- ISBN 3031072138
- Veröffentlichung 19.08.2022
- Titel Evaluation of Text Summaries Based on Linear Optimization of Content Metrics
- Autor Jonathan Rojas-Simon , Rene Arnulfo Garcia-Hernandez , Yulia Ledeneva
- Untertitel Studies in Computational Intelligence 1048
- Gewicht 518g
- Sprache Englisch