Evaluation of Text Summaries Based on Linear Optimization of Content Metrics

CHF 164.35
Auf Lager
SKU
T9DUTFJ2317
Stock 1 Verfügbar
Geliefert zwischen Mo., 23.02.2026 und Di., 24.02.2026

Details

This book provides a comprehensive discussion and new insights about linear optimization of content metrics to improve the automatic Evaluation of Text Summaries (ETS). The reader is first introduced to the background and fundamentals of the ETS. Afterward, state-of-the-art evaluation methods that require or do not require human references are described. Based on how linear optimization has improved other natural language processing tasks, we developed a new methodology based on genetic algorithms that optimize content metrics linearly. Under this optimization, we propose SECO-SEVA as an automatic evaluation metric available for research purposes. Finally, the text finishes with a consideration of directions in which automatic evaluation could be improved in the future. The information provided in this book is self-contained. Therefore, the reader does not require an exhaustive background in this area. Moreover, we consider this book the first one that deals with the ETS in depth.


Introduces the reader to the background and fundamentals of the Evaluation of Text Summaries (ETS) Provides state-of-the-art studies and new methodologies for improving the ETS Shows the design of experiments that combine evaluation metrics for the ETS

Inhalt
Introduction.- Background of the ETS.- Fundamentals of the ETS.- State-of-the-art Automatic Evaluation Methods.- A Novel Methodology based on Linear Optimization of Metrics for the ETS.- Experimenting with Linear Optimization of Metrics for Single-document Summarization Evaluation.- Experimenting with Linear Optimization of Metrics for Multi-document Summarization Evaluation.- Conclusions and future considerations for the ETS.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031072161
    • Genre Technology Encyclopedias
    • Lesemotiv Verstehen
    • Anzahl Seiten 232
    • Herausgeber Springer
    • Größe H235mm x B155mm x T13mm
    • Jahr 2023
    • EAN 9783031072161
    • Format Kartonierter Einband
    • ISBN 3031072162
    • Veröffentlichung 20.08.2023
    • Titel Evaluation of Text Summaries Based on Linear Optimization of Content Metrics
    • Autor Jonathan Rojas-Simon , Yulia Ledeneva , Rene Arnulfo Garcia-Hernandez
    • Untertitel Studies in Computational Intelligence 1048
    • Gewicht 359g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38