Evidence Filtering

CHF 78.70
Auf Lager
SKU
UDID6AAIO8H
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025

Details

Wireless sensor networks attempt to revolutionize
the way we interact with the physical world by
networking multitudes of small sensors attached to
wireless radios. This book presents a novel method
named Evidence Filtering for processing multi-
modality sensor data in such networks. Based on
Dempster-Shafer evidence theory, it allows one to
directly process temporally and spatially
distributed multi-modality sensor data and infer on
the `frequency' characteristics of events of
interest. Second part of the book covers distributed
methods to implement spatio-temporal filtering
applications in grid sensor networks. Based on the
Fornasini-Marchesini local state space model, these
distributed methods enable local actuation in
response to local events. The techniques discussed
here provide a highly effective toolset for one to
implement spatio-temporal filtering applications in
multi-modality grid sensor networks. This book also
covers past research in related areas and is
intended for students, engineers, scientists, and
researchers in the related disciplines.

Autorentext
Duminda A. Dewasurendra (PhD) studied Electrical Engineering at the University of Notre Dame. Currently he is a Senior Design Engineer at Motorola Inc. Peter H. Bauer (PhD) is a Professor of Electrical Engineering at the University of Notre Dame, and is the Head of Mobile Sensor Systems (MOSES) Laboratory.

Klappentext
Wireless sensor networks attempt to revolutionize the way we interact with the physical world by networking multitudes of small sensors attached to wireless radios. This book presents a novel method named Evidence Filtering for processing multi- modality sensor data in such networks. Based on Dempster-Shafer evidence theory, it allows one to directly process temporally and spatially distributed multi-modality sensor data and infer on the `frequency' characteristics of events of interest. Second part of the book covers distributed methods to implement spatio-temporal filtering applications in grid sensor networks. Based on the Fornasini-Marchesini local state space model, these distributed methods enable local actuation in response to local events. The techniques discussed here provide a highly effective toolset for one to implement spatio-temporal filtering applications in multi-modality grid sensor networks. This book also covers past research in related areas and is intended for students, engineers, scientists, and researchers in the related disciplines.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639122336
    • Anzahl Seiten 128
    • Genre Wärme- und Energietechnik
    • Herausgeber VDM Verlag
    • Jahr 2009
    • EAN 9783639122336
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-12233-6
    • Titel Evidence Filtering
    • Autor Duminda A. Dewasurendra
    • Untertitel Processing Multi-Modality Sensor Data in Wireless Sensor Networks
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.