Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Evolutionary Computing Performance via MapReduce Parallel Processing
Details
Evolutionary computation (EC) is a method that is ubiquitously used to solve complex computation. Examples of EC such as Genetic Algorithm (GA) and PSO (Particle Swarm Optimization) are prevalent due to their efficiency and effectiveness. Despite these advantages, EC suffers from long execution time due to its parallel nature. Therefore, this research explores the prospect of speeding up the EC algorithms specifically GA and PSO via MapReduce (MR) parallel processing framework. MR is an emerging parallel processing framework that hides the complex parallelization processes by employing the functional abstraction of "map and reduce". The performance of the parallelized GA via MR and PSO via MR are evaluated using an analogous case study to find out the speedup and efficiency in order to measure the scalability of both proposed algorithms. Comparisons between GA via MR and PSO via MR are also established in order to find which EC algorithm scales better via MR parallel processing framework. From the results and analysis obtained from this research, it is established that both GA and PSO can be efficiently parallelized and shows good scalability via MR parallel processing framework.
Autorentext
Ahmad Firdaus Ahmad Fadzil is a full time lecturer at Universiti Teknologi MARA (UiTM) Jasin, Melaka. A proud product of UiTM, he received his diploma, degree, and masters under the same UiTM brand. He has great enthusiasm for evolutionary computing, parallel processing, and image processing.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659847691
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 164
- Genre Software
- Sprache Englisch
- Gewicht 262g
- Autor Ahmad Firdaus Ahmad Fadzil
- Größe H220mm x B150mm x T11mm
- Jahr 2016
- EAN 9783659847691
- Format Kartonierter Einband
- ISBN 3659847690
- Veröffentlichung 16.02.2016
- Titel Evolutionary Computing Performance via MapReduce Parallel Processing