Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Evolutionary Machine Learning in Linguistic Knowledge Extraction
Details
This book is proposing a hybrid algorithm of two fuzzy genetic-based machine learning approaches - Michigan and Pittsburgh - for designing fuzzy rule-based classification systems. The search ability of each approach is examined to efficiently find fuzzy rule-based systems with high classification accuracy. These two approaches are combined into a single hybrid algorithm. The generalization ability of fuzzy rule-based classification systems, designed by the proposed hybrid algorithm is examined on real data sets. Experimental results show that the hybrid algorithm has higher search ability within a population of individual rules and within a population of rule sets.
Autorentext
Dr. Lamiaa H. Ahmed is a Lecturer of Computer Science at Modern Academy in Maadi, Cairo, Egypt. Computational Intelligence, Evolutionary Programming, Membrane Computing, Fuzzy Logic, Organic Computing and Java programming language are areas of interest.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659891038
- Genre Information Technology
- Anzahl Seiten 140
- Größe H220mm x B150mm x T9mm
- Jahr 2016
- EAN 9783659891038
- Format Kartonierter Einband
- ISBN 3659891037
- Veröffentlichung 17.05.2016
- Titel Evolutionary Machine Learning in Linguistic Knowledge Extraction
- Autor Lamiaa Ahmed , Amr Badr , Mostafa Abd El-Azim
- Gewicht 227g
- Herausgeber LAP LAMBERT Academic Publishing
- Sprache Englisch