Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Evolutionary Multi-Agent Systems
Details
This book addresses agent-based computing, concentrating in particular on evolutionary multi-agent systems (EMAS), which have been developed since 1996 at the AGH University of Science and Technology in Cracow, Poland. It provides the relevant background information on and a detailed description of this computing paradigm, along with key experimental results.
Readers will benefit from the insightful discussion, which primarily concerns the efficient implementation of computing frameworks for developing EMAS and similar computing systems, as well as a detailed formal model. Theoretical deliberations demonstrating that computing with EMAS always helps to find the optimal solution are also included, rounding out the coverage.
Includes a full formal analysis of evolutionary multi-agent systems (EMAS) Provides a literature review and explores the motivation and definition of the systems considered Explains the design and implementation of the platforms supporting EMAS-like computations Presents experimental results obtained by applying EMAS and some of its modifications to solve discrete and continuous problems Explores the possibilities of adapting particular EMAS parameters to solve benchmarking problems of varying difficulty Includes supplementary material: sn.pub/extras
Inhalt
Preface.- Part I Concept and formal model: Contemporary methods of computational intelligence.- Agent-based computing.- Formal aspects of agent-based metaheuristics.- Part II Design and implementation: Agent-based and component inspirations.- Implementation aspects of agent-based computing systems.- AgE Computing Environment.- Part III Experimental results: EMAS in optimization problems.- Tuning of EMAS parameters.- Final remarks.- References.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319513874
- Genre Technology Encyclopedias
- Auflage 1st edition 2017
- Lesemotiv Verstehen
- Anzahl Seiten 224
- Herausgeber Springer International Publishing
- Größe H241mm x B160mm x T18mm
- Jahr 2017
- EAN 9783319513874
- Format Fester Einband
- ISBN 3319513877
- Veröffentlichung 02.01.2017
- Titel Evolutionary Multi-Agent Systems
- Autor Marek Kisiel-Dorohinicki , Aleksander Byrski
- Untertitel From Inspirations to Applications
- Gewicht 506g
- Sprache Englisch