Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Evolutionary Multi-objective Optimization in Uncertain Environments
Details
The primary motivation of this book is to provide a comprehensive introduction on the design and application of evolutionary algorithms for multi-objective optimization in the presence of uncertainties. The book is intended for a wide readership.
Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algorithms in the past decade, many researchers assume that the optimization problems are deterministic and uncertainties are rarely examined.
The primary motivation of this book is to provide a comprehensive introduction on the design and application of evolutionary algorithms for multi-objective optimization in the presence of uncertainties. In this book, we hope to expose the readers to a range of optimization issues and concepts, and to encourage a greater degree of appreciation of evolutionary computation techniques and the exploration of new ideas that can better handle uncertainties. "Evolutionary Multi-Objective Optimization in Uncertain Environments: Issues and Algorithms" is intended for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of evolutionary multi-objective optimization and uncertainties.
Presents recent results in Evolutionary Multi-objective Optimization in Uncertain Environments Includes supplementary material: sn.pub/extras
Inhalt
I: Evolving Solution Sets in the Presence of Noise.- Noisy Evolutionary Multi-objective Optimization.- Handling Noise in Evolutionary Multi-objective Optimization.- Handling Noise in Evolutionary Neural Network Design.- II: Tracking Dynamic Multi-objective Landscapes.- Dynamic Evolutionary Multi-objective Optimization.- A Coevolutionary Paradigm for Dynamic Multi-Objective Optimization.- III: Evolving Robust Solution Sets.- Robust Evolutionary Multi-objective Optimization.- Evolving Robust Solutions in Multi-Objective Optimization.- Evolving Robust Routes.- Final Thoughts.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642101137
- Auflage Softcover reprint of hardcover 1st edition 2009
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H235mm x B155mm x T16mm
- Jahr 2010
- EAN 9783642101137
- Format Kartonierter Einband
- ISBN 3642101135
- Veröffentlichung 28.10.2010
- Titel Evolutionary Multi-objective Optimization in Uncertain Environments
- Autor Kay Chen Tan , Chi-Keong Goh
- Untertitel Issues and Algorithms
- Gewicht 435g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 284
- Lesemotiv Verstehen