Exotic Sphere

CHF 43.15
Auf Lager
SKU
OB3CEC8ER6G
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

In mathematics, an exotic sphere is a differentiable manifold that is homeomorphic to the standard Euclidean n-sphere, but not diffeomorphic. That means that such a manifold M is a sphere from a topological point of view, but not from the point of view of its differential structure. Thus, if M has dimension n, there is a homeomorphism h : M to S^n, but no such h is a diffeomorphism. The first exotic spheres were constructed by John Milnor (1956) in dimension n = 7 as S3-bundles over S4. He showed that there at least 7 differentiable structures on the 7-sphere. In any dimension Milnor (1959) showed that the diffeomorphism classes of oriented exotic spheres form the non-trivial elements of an abelian monoid under connected sum, which is a finite abelian group if the dimension is not 4. The classification of exotic spheres by Michel Kervaire and John Milnor (1963) showed that the oriented exotic 7-spheres are the non-trivial elements of a cyclic group of order 28 under the operation of connected sum.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130628970
    • Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
    • EAN 9786130628970
    • Format Fachbuch
    • Titel Exotic Sphere
    • Herausgeber Alphascript Publishing
    • Anzahl Seiten 88
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38