Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Exotic Sphere
CHF 43.15
Auf Lager
SKU
OB3CEC8ER6G
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
In mathematics, an exotic sphere is a differentiable manifold that is homeomorphic to the standard Euclidean n-sphere, but not diffeomorphic. That means that such a manifold M is a sphere from a topological point of view, but not from the point of view of its differential structure. Thus, if M has dimension n, there is a homeomorphism h : M to S^n, but no such h is a diffeomorphism. The first exotic spheres were constructed by John Milnor (1956) in dimension n = 7 as S3-bundles over S4. He showed that there at least 7 differentiable structures on the 7-sphere. In any dimension Milnor (1959) showed that the diffeomorphism classes of oriented exotic spheres form the non-trivial elements of an abelian monoid under connected sum, which is a finite abelian group if the dimension is not 4. The classification of exotic spheres by Michel Kervaire and John Milnor (1963) showed that the oriented exotic 7-spheres are the non-trivial elements of a cyclic group of order 28 under the operation of connected sum.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130628970
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- EAN 9786130628970
- Format Fachbuch
- Titel Exotic Sphere
- Herausgeber Alphascript Publishing
- Anzahl Seiten 88
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung