Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Explainability in Federated Learning
Details
"Explainability in Federated Learning" offers a comprehensive exploration of integrating explainable AI (XAI) into federated learning (FL) systems. The book begins by outlining the fundamentals of FL and XAI before delving into their intersection, highlighting the challenges and benefits of interpretability in decentralized environments. It presents various explainability techniques tailored to FL, emphasizing personalization, handling of heterogeneous data, and operation in resource-constrained settings. Key chapters address trust, fairness, and transparency, supported by real-world case studies and visualization tools. Ethical, legal, and social implications are discussed alongside adversarial perspectives. The book concludes with benchmarking strategies and future research directions, serving as a vital guide for researchers, developers, and policymakers aiming to build transparent, trustworthy FL models.
Autorentext
Dr. Sravanthi Dontu and Dr. Rohith Vallabhaneni, both accomplished researchers with Ph.D.s from the University of the Cumberlands, USA, specialize in AI and IT. Their expertise spans cloud computing, cybersecurity, IoT, and software engineering. They have contributed significantly through publications, innovation, leadership, and global connects.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786208443412
- Anzahl Seiten 116
- Genre Software
- Sprache Englisch
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 191g
- Untertitel DE
- Größe H220mm x B150mm x T7mm
- Jahr 2025
- EAN 9786208443412
- Format Kartonierter Einband
- ISBN 6208443415
- Veröffentlichung 22.04.2025
- Titel Explainability in Federated Learning
- Autor Sravanthi Dontu , Rohith Vallabhaneni