Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Explainable AI: Foundations, Methodologies and Applications
Details
This book presents an overview and several applications of explainable artificial intelligence (XAI). It covers different aspects related to explainable artificial intelligence, such as the need to make the AI models interpretable, how black box machine/deep learning models can be understood using various XAI methods, different evaluation metrics for XAI, human-centered explainable AI, and applications of explainable AI in health care, security surveillance, transportation, among other areas.
The book is suitable for students and academics aiming to build up their background on explainable AI and can guide them in making machine/deep learning models more transparent. The book can be used as a reference book for teaching a graduate course on artificial intelligence, applied machine learning, or neural networks. Researchers working in the area of AI can use this book to discover the recent developments in XAI. Besides its use in academia, this book could be used by practitioners in AI industries, healthcare industries, medicine, autonomous vehicles, and security surveillance, who would like to develop AI techniques and applications with explanations.
Written for beginners and advanced machine learning users, including engineers and researchers on AI and applications Covers concepts such as black box models, transparency, interpretable machine learning and explanations Presents evaluation methods and metrics, ethical, legal, and social issues, and applications and examples of XAI
Klappentext
Black Box Models for eXplainable Artificial Intelligence.- Fundamental Fallacies in Definitions of Explainable AI: Explainable to Whom and Why?.- An Overview of Explainable AI Methods, Forms and Frameworks.
Inhalt
Black Box Models for eXplainable Artificial Intelligence.- Fundamental Fallacies in Definitions of Explainable AI: Explainable to Whom and Why?.- An Overview of Explainable AI Methods, Forms and Frameworks.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031128066
- Genre Technology Encyclopedias
- Editor Mayuri Mehta, Vasile Palade, Indranath Chatterjee
- Lesemotiv Verstehen
- Anzahl Seiten 280
- Herausgeber Springer
- Größe H241mm x B160mm x T21mm
- Jahr 2022
- EAN 9783031128066
- Format Fester Einband
- ISBN 3031128060
- Veröffentlichung 20.10.2022
- Titel Explainable AI: Foundations, Methodologies and Applications
- Untertitel Intelligent Systems Reference Library 232
- Gewicht 588g
- Sprache Englisch