Explicit Nonlinear Model Predictive Control

CHF 131.95
Auf Lager
SKU
BJMS2AMQD7J
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 05.11.2025 und Do., 06.11.2025

Details

This book discusses multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies.

Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity.

This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations:

Ø Nonlinear systems described by first-principles models and nonlinear systems described by black-box models;

  • Nonlinear systems with continuous control inputs and nonlinear systems with quantized control inputs;

  • Nonlinear systems without uncertainty and nonlinear systems with uncertainties (polyhedral description of uncertainty and stochastic description of uncertainty);

  • Nonlinear systems, consisting of interconnected nonlinear sub-systems.

    The proposed mp-NLP approaches are illustrated with applications to several case studies, which are taken from diverse areas such as automotive mechatronics, compressor control, combustion plant control, reactor control, pH maintaining system control, cart and spring system control, and diving computers.

    Presents an explicit solution of model predictive control problems for constrained nonlinear systems Recent research on various types of nonlinear systems resulting in various Nonlinear Model Predictive Control formulations Illustrated with applications to practical nonlinear systems

    Inhalt
    Multi-parametric Programming.- Nonlinear Model Predictive Control.- Explicit NMPC Using mp-QP Approximations of mp-NLP.- Explicit NMPC via Approximate mp-NLP.- Explicit MPC of Constrained Nonlinear Systems with Quantized Inputs.- Explicit Min-Max MPC of Constrained Nonlinear Systems with Bounded Uncertainties.- Explicit Stochastic NMPC.- Explicit NMPC Based on Neural Network Models.- Semi-Explicit Distributed NMPC.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642287794
    • Genre Elektrotechnik
    • Auflage 2012
    • Sprache Englisch
    • Lesemotiv Verstehen
    • Anzahl Seiten 248
    • Größe H235mm x B155mm x T14mm
    • Jahr 2012
    • EAN 9783642287794
    • Format Kartonierter Einband
    • ISBN 3642287794
    • Veröffentlichung 23.03.2012
    • Titel Explicit Nonlinear Model Predictive Control
    • Autor Tor Arne Johansen , Alexandra Grancharova
    • Untertitel Theory and Applications
    • Gewicht 382g
    • Herausgeber Springer Berlin Heidelberg

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.