Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Exploring Deep Learning Architectures for Graph Applications
Details
Graph-structured data are the backbone of numerous real-world machine learning tasks, such as social networks, recommender systems, traffic networks, and so on. The fundamental challenge in solving these tasks is to find a way to encode graph structures as well as to incorporate various node or edge information so that machine learning models can easily exploit them. In this dissertation, we explore deep learning architectures, especially the graph neural networks for multiple graph learning applications, i.e., node classification, link prediction, spatiotemporal graph forecasting on irregular grid, and supervised sequence learning problems.
Autorentext
The authors are from the department of computer science & engineering at The Chinese University of Hong Kong.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786202917650
- Anzahl Seiten 136
- Genre Allgemein & Lexika
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 221g
- Größe H220mm x B150mm x T9mm
- Jahr 2020
- EAN 9786202917650
- Format Kartonierter Einband (Kt)
- ISBN 6202917652
- Veröffentlichung 22.10.2020
- Titel Exploring Deep Learning Architectures for Graph Applications
- Autor Jiani Zhang , Irwin King
- Sprache Englisch