Exploring Representation in Evolutionary Level Design

CHF 62.35
Auf Lager
SKU
3T8C92FB6VM
Stock 1 Verfügbar
Geliefert zwischen Mi., 25.02.2026 und Do., 26.02.2026

Details

Automatic content generation is the production of content for games, web pages, or other purposes by procedural means. Search-based automatic content generation employs search-based algorithms to accomplish automatic content generation. This book presents a number of different techniques for search-based automatic content generation where the search algorithm is an evolutionary algorithm. The chapters treat puzzle design, the creation of small maps or mazes, the use of L-systems and a generalization of L-system to create terrain maps, the use of cellular automata to create maps, and, finally, the decomposition of the design problem for large, complex maps culminating in the creation of a map for a fantasy game module with designersupplied content and tactical features.

The evolutionary algorithms used for the different types of content are generic and similar, with the exception of the novel sparse initialization technique are presented in Chapter 2. The points where the content generation systems vary are in the design of their fitness functions and in the way the space of objects being searched is represented. A large variety of different fitness functions are designed and explained, and similarly radically different representations are applied to the design of digital objects all of which are, essentially, maps for use in games.


Autorentext

Dr. Daniel Ashlock is a professor of mathematics at the University of Guelph in Ontario, Canada. Dr. Ashlock received his Ph.D. in mathematics from Caltech with a focus in algebraic combinatorics. He was employed at Iowa State University before moving to Canada. Dr. Ashlock works on representation issues in evolutionary computation including games, optimization, bioinformatics, and theoretical biology. He holds the Bioinformatics Chair in the Department of Mathematics and Statistics at Guelph and serves on the editorial board of the IEEE Transactions on Evolutionary Computation, the IEEE Transactions on Games, The IEEE/ACM Transactions on Bioinformatics and Computational Biology, Biosystems, and Game and Puzzle Design. Dr. Ashlock serves on the IEEE Computational Intelligence Societies technical committees on games and bioinformatics and biomedical engineering.


Inhalt
Preface.- Acknowledgments.- Introduction.- Contrasting Representations for Maze Generation.- Dual Mazes.- Terrain Maps.- Cellular Automata Based Maps.- Decomposition, Tiling, and Assembly.- Bibliography.- Author's Biography.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Anzahl Seiten 156
    • Herausgeber Springer Nature Switzerland
    • Gewicht 305g
    • Untertitel Synthesis Lectures on Games and Computational Intelligence
    • Autor Daniel Ashlock
    • Titel Exploring Representation in Evolutionary Level Design
    • Veröffentlichung 21.05.2018
    • ISBN 3031009924
    • Format Kartonierter Einband
    • EAN 9783031009921
    • Jahr 2018
    • Größe H235mm x B191mm x T9mm
    • Lesemotiv Verstehen
    • GTIN 09783031009921

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38