Extensions to the No-Core Shell Model

CHF 155.15
Auf Lager
SKU
BD4HOPS8RN3
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

Extensions to the No-Core Shell Model presents three extensions to the No-Core Shell Model (NCSM) that allow for calculations of heavier nuclei, specifically for the p-shell nuclei. The Importance-Truncated NCSM (IT-NCSM) formulated on arguments of multi-configurational perturbation theory selects a small set of basis states from the initially large basis space in which the Hamiltonian is diagonalized. Previous IT-NCSM calculations have proven reliable, however, there has been no thorough investigation of the inherent error in the truncated IT-NCSM calculations.

This thesis provides a detailed study of IT-NCSM calculations and compares them to full NCSM calculations to judge the accuracy of IT-NCSM in heavier nuclei. When IT-NCSM calculations are performed, one often needs to extrapolate the ground-state energy from the finite basis (or model) spaces to the full NCSM model space. In this thesis a careful investigation of the extrapolation procedures was performed. On a related note, extrapolations in the NCSM are commonplace, but up to recently did not have the ultraviolet (UV) or infrared (IR) physics under control. This work additionally presents a method that maps the NCSM parameters into an effective-field theory inspired framework, in which the UV and IR physics are treated appropriately. The NCSM is well-suited to describe bound-state properties of nuclei, but is not well-adapted to describe loosely bound systems, such as the exotic nuclei near the neutron drip line. With the inclusion of the Resonating Group Method (RGM), the NCSM / RGM can provide a first-principles description of exotic nuclei and the first extension of the NCSM.


Nominated by University of Arizona, USA, as an outstanding Ph.D. thesis Presents three extensions to the No-Core Shell Model which allow for larger calculations of nuclei, specifically for the p-shell nuclei Develops a new technique for reducing basis spaces so that heavier nuclei can be investigated within the No-Core Shell Model Provides an understanding of how structures of different atomic nuclei arise directly from the fundamental strong interactions among protons and neutrons

Autorentext

Current affiliation:

Lawrence Livermore National Laboratory
Livermore, CA 94550
USA

Research performed at:

University of Arizona
Department of Physics
Tucson, AZ 85721
USA

Dr. Michael Kruse completed his Ph.D. thesis in April 2012 at the University of Arizona, USA, and is currently at Lawrence Livermore National Laboratory (LLNL), Livermore, CA, USA. He was twice awarded with the Galileo Circle Scholars award, in 2009 and 2012, which are given by the Galileo Circle at the University of Arizona to the finest undergraduate and graduate science students.


Inhalt
Introduction to Low-Energy Nuclear Physics.- The No Core Shell Model.- Importance Truncated No Core Shell Model.- UV and IR Properties of the NCSM.- Extending the NCSM with the RGM.- Conclusion.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Anzahl Seiten 140
    • Herausgeber Springer International Publishing
    • Gewicht 383g
    • Untertitel Importance-Truncation, Regulators and Reactions
    • Autor Michael Karl Gerhard Kruse
    • Titel Extensions to the No-Core Shell Model
    • Veröffentlichung 19.09.2013
    • ISBN 3319013920
    • Format Fester Einband
    • EAN 9783319013923
    • Jahr 2013
    • Größe H241mm x B160mm x T11mm
    • Lesemotiv Verstehen
    • Auflage 2013
    • GTIN 09783319013923

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38