Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Extremizers for adjoint Fourier restriction inequalities
Details
We explore two themes in this book. In the first four chapters we study the existence of extremals for adjoint Fourier restriction inequalities associated to three hypersurfaces: the cone, the hyperboloid and the paraboloid. This can be seen equivalently in the context of extremizers for Strichartz estimates for the wave, Klein-Gordon and Schrödinger equations, respectively. In the first chapter we give an introduction to the topic and main techniques and devote the next three chapters to study existence and nonexistence of extremizers, precompactness of extremizing sequences, Euler-Lagrange equations for extremizers and best constants for adjoint Fourier restriction inequalities. In the last two chapters we change the topic and look at an incidence geometry problem, the problem of counting non-coplanar intersections of lines in Euclidean space, and give a sharp upper bound. The problem can be seen as a discrete version of the Kakeya problem, an open problem in Analysis.
Autorentext
René Quilodrán obtained a B.S. in Mathematics and the degree of Mathematical Engineer from the University of Chile, in Santiago of Chile. He then graduated with a PhD degree in Mathematics from the University of California at Berkeley, USA in 2012.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659236327
- Sprache Englisch
- Größe H220mm x B220mm x T150mm
- Jahr 2012
- EAN 9783659236327
- Format Kartonierter Einband (Kt)
- ISBN 978-3-659-23632-7
- Titel Extremizers for adjoint Fourier restriction inequalities
- Autor René Quilodrán
- Untertitel And a result in incidence geometry
- Herausgeber LAP Lambert Academic Publishing
- Anzahl Seiten 144
- Genre Mathematik