FACE RECOGNITION TECHNIQUES BASED ON EIGEN FEATURES AND ANN

CHF 59.95
Auf Lager
SKU
HRUOEI2N654
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Face recognition has garnered significant attention from researchers in the field of pattern recognition in recent decades. Its importance has grown due to its potential applications in law enforcement, access control systems, video surveillance, user authentication, and criminal investigations. While there are face recognition systems that perform well in controlled environments, real-time applications pose significant challenges. Factors such as illumination, expression, pose, scale, low resolution, partial face occlusion, and environmental conditions make face recognition a complex task. To address these challenges, this study proposes a hybrid face recognition system that considers both holistic and structural information. In the first method, the feature vector is directly inputted to an ANN (either Backpropagation Neural Network or Radial Basis Function Network) for classification. In the second method, the feature vector formed by combining multi-scale face components is projected onto a PCA or LDA feature space to obtain a feature weight vector, which is then used as input to the ANN classifier.

Autorentext

Dr. K. Rama Linga Reddy has 30 years teaching experience with 22 years in GNITS and 8 years in CBIT. He has been working as HOD for ETE department since 2002. He has 85 research papers to his credit. He successfully guided 5 Ph.Ds from JNTUH. Advisor and BOS member for many engineering colleges.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786206685944
    • Genre Electrical Engineering
    • Sprache Englisch
    • Anzahl Seiten 88
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm x T6mm
    • Jahr 2023
    • EAN 9786206685944
    • Format Kartonierter Einband
    • ISBN 6206685942
    • Veröffentlichung 06.07.2023
    • Titel FACE RECOGNITION TECHNIQUES BASED ON EIGEN FEATURES AND ANN
    • Autor Katta Rama Linga Reddy
    • Untertitel PART-1
    • Gewicht 149g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470