Facial Expression Recognition

CHF 61.90
Auf Lager
SKU
KUDKE66MJOQ
Stock 1 Verfügbar
Geliefert zwischen Fr., 28.11.2025 und Mo., 01.12.2025

Details

This work presents a novel approach for recognizing facial expressions by incorporating class-mean Gabor responses of sampled images of human facial expressions and kernel principal component analysis (kernel PCA) with fractional polynomial power models. A mean vector of features is obtained with Gabor filters from a class of images instead of the more common method in which features are obtained from individual images. The computational cost of spatial convolutions on mean features of a class is less than the same type of convolutions with individual features. The dimensionality of mean features from Gabor filters is further reduced by using a kernel PCA technique with polynomial kernels. The kernel PCA technique is extended to use fractional power polynomial models for facial expression recognition. The proposed approach has the advantage of doing fewer projections than other facial expression recognition approaches that use traditional kernel PCA models. The proposed approach of class- mean Gabor responses has higher accuracy than existing systems that use the kernel PCA technique with class-mean image responses only.

Autorentext

is a computer scientist, a tinkerer, and a photographer. He obtained his Master's degree in Computer Science at Ohio University in USA. His areas of interest are Computer Vision and Artificial Intelligence. He is actively involved in projects related to artificial vision and speech for mobile platforms.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639233100
    • Sprache Englisch
    • Größe H220mm x B150mm x T5mm
    • Jahr 2010
    • EAN 9783639233100
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-23310-0
    • Titel Facial Expression Recognition
    • Autor Carlo Chung
    • Untertitel by Using Class Mean Gabor Responses with Kernel Principal Component Analysis
    • Gewicht 131g
    • Herausgeber VDM Verlag Dr. Müller e.K.
    • Anzahl Seiten 76
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470