Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach

CHF 218.50
Auf Lager
SKU
HJTHE36B25A
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Di., 07.10.2025 und Mi., 08.10.2025

Details

Theincreasingcomplexityofspacevehiclessuchassatellites,andthecostreduction measures that have affected satellite operators are increasingly driving the need for more autonomy in satellite diagnostics and control systems. Current methods for detecting and correcting anomalies onboard the spacecraft as well as on the ground are primarily manual and labor intensive, and therefore, tend to be slow. Operators inspect telemetry data to determine the current satellite health. They use various statisticaltechniques andmodels,buttheanalysisandevaluation ofthelargevolume of data still require extensive human intervention and expertise that is prone to error. Furthermore, for spacecraft and most of these satellites, there can be potentially unduly long delays in round-trip communications between the ground station and the satellite. In this context, it is desirable to have onboard fault-diagnosis system that is capable of detecting, isolating, identifying or classifying faults in the system withouttheinvolvementandinterventionofoperators.Towardthisend,theprinciple goal here is to improve the ef?ciency, accuracy, and reliability of the trend analysis and diagnostics techniques through utilization of intelligent-based and hybrid-based methodologies.

Presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems; taking advantage of both systems' mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques Simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module Presents fault detection, isolation, and identification (FDII) of reaction wheels of a 3-axis stabilized satellite in presence of disturbances and noise demonstrating effectiveness under both full and partial-state measurements Includes supplementary material: sn.pub/extras

Klappentext

There is an increasing demand for man-made dynamical systems to operate autonomously in the presence of faults and failures in sensors, actuators or components. Fault diagnosis and health monitoring are essential components of an autonomous system. Hence, a high demand exists for the development of intelligent systems that are able to autonomously detect the presence and isolate the location of faults occurring in different components of complex dynamical systems. Fault Diagnosis of Nonlinear Systems Using A Hybrid Approach focuses on developing a fault diagnosis methodology that enables on-line health monitoring of nonlinear systems and off-line monitoring purposes.


Inhalt
Fault Detection and Diagnosis.- Proposed FDII for Nonlinear Systems with Full-State Measurement.- Proposed FDII for Nonlinear Systems with Partial State Measurement.- Application to a Satellite's Attitude Control Subsystem.- Conclusions.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09780387929064
    • Auflage 2009 edition
    • Sprache Englisch
    • Genre Maschinenbau
    • Lesemotiv Verstehen
    • Anzahl Seiten 268
    • Größe H235mm x B156mm x T22mm
    • Jahr 2009
    • EAN 9780387929064
    • Format Kartonierter Einband
    • ISBN 978-0-387-92906-4
    • Veröffentlichung 22.06.2009
    • Titel Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach
    • Autor Ehsan Sobhani-Tehrani , Khashayar Khorasani
    • Untertitel Lecture Notes in Control and Information Sciences 398, Lecture Notes in Control
    • Gewicht 433g
    • Herausgeber Springer-Verlag GmbH

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.