Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Fault Tolerance for faults in Artificial Neural Networks
Details
This bookk addresses the fault tolerance of RBF networks where all hidden nodes have the same fault rate and their fault probabilities are independent. Assuming that there is a Gaussian distributed noise in the output data, we have derived an objective function for robustly training an RBF network based on the Kullback-Leibler divergence. We also find that for a fault-tolerance regularizer some eigenvalues of the regularization matrix should be negative. For the Tipping's regularizer and the OLS regularizer, the regularization matrices are positive or semipositive definite. Hence, they cannot efficiently handle the multinode open fault.
Autorentext
Saritha, presently works as Assistant Professor in VRSiddhartha Engineering College, Vijayawada. Shegraduated in E.C.E from Adams Engineering College in2002 and M.Tech in Digital Electronics andcommunication systems from JNTU college ofEngineering College, Anantapur in 2011. She has 15years of teaching experience .
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786200324030
- Anzahl Seiten 64
- Genre Allgemein & Lexika
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 113g
- Untertitel Robust Fault Tolerance for Multinode faults in RBF Neural Networks
- Größe H220mm x B150mm x T4mm
- Jahr 2019
- EAN 9786200324030
- Format Kartonierter Einband
- ISBN 6200324034
- Veröffentlichung 25.09.2019
- Titel Fault Tolerance for faults in Artificial Neural Networks
- Autor Saritha V
- Sprache Englisch