Feature Selection and Binary Classification Using Microarray Data

CHF 105.30
Auf Lager
SKU
9PMCMG5NKCD
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025

Details

DNA microarray technology has greatly influenced the realms of biomedical research, with the hopes of significantly impacting the diagnosis and treatment of diseases. Microarrays have the ability to measure the expression levels of thousands of genes simultaneously. This research entails a rigorous and systematic comparison of statistical classifiers composed of supervised learning methods and either univariate or genetic algorithm-based multivariate feature subset selection (FSS) techniques, all applied to six published two-class microarray datasets.These analyses should provide insights into univariate vs. multivariate FSS and how to obtain realistic and honest misclassification error rates via cross-validation (CV). Ultimately, this research puts to test the more traditional implementations of CV and FSS and provides a solid foundation on which these topics can and should be further investigated when performing limited-sample classification using high-dimensional gene expression data.The analyses presented should be especially useful to researchers in the fields of bioinformatics, supervised learning, and variable selection, as well as anyone interested in microarray analysis.

Autorentext
Lecocke, Michael Michael L. Lecocke, Ph.D.: Studied microarray gene expression analysis at Rice University and M.D. Anderson Cancer Center, Houston, TX. Currently Assistant Professor in Dept of Mathematics at St. Mary's University and Adjunct Assistant Professor in Dept of Epidemiology and Biostatistics at University of Texas Health Science Center, San Antonio, TX.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783836475969
    • Sprache Englisch
    • Größe H15mm x B220mm x T150mm
    • Jahr 2013
    • EAN 9783836475969
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-8364-7596-9
    • Titel Feature Selection and Binary Classification Using Microarray Data
    • Autor Michael Lecocke
    • Untertitel Background, Methods, and Comparison of Classifiers Using Univariate and Genetic Algorithm-Based Feature Selection and Supervised Learning Techniques
    • Gewicht 392g
    • Herausgeber VDM Verlag Dr. Müller e.K.
    • Anzahl Seiten 252
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.