Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering
Details
This book puts forward a new method for solving the text document (TD) clustering problem, which is established in two main stages: (i) A new feature selection method based on a particle swarm optimization algorithm with a novel weighting scheme is proposed, as well as a detailed dimension reduction technique, in order to obtain a new subset of more informative features with low-dimensional space. This new subset is subsequently used to improve the performance of the text clustering (TC) algorithm and reduce its computation time. The k-mean clustering algorithm is used to evaluate the effectiveness of the obtained subsets. (ii) Four krill herd algorithms (KHAs), namely, the (a) basic KHA, (b) modified KHA, (c) hybrid KHA, and (d) multi-objective hybrid KHA, are proposed to solve the TC problem; each algorithm represents an incremental improvement on its predecessor. For the evaluation process, seven benchmark text datasets are used with different characterizations and complexities.
Text document (TD) clustering is a new trend in text mining in which the TDs are separated into several coherent clusters, where all documents in the same cluster are similar. The findings presented here confirm that the proposed methods and algorithms delivered the best results in comparison with other, similar methods to be found in the literature.
Presents a new method for solving the text document clustering problem and demonstrates that it can outperform other comparable methods Covers the main text clustering preprocessing steps and the metaheuristics needed in order to deal with the text document clustering problems Proposes methods that can be applied to a broad range of text documents (e.g. newsgroup documents appearing on newswires, Internet web pages, and hospital information), modern applications (technical reports and university data), and the biomedical sciences (large biomedical datasets)
Inhalt
Chapter 1. Introduction.- Chapter 2. Krill Herd Algorithm.- Chapter 3. Literature Review.- Chapter 4. Proposed Methodology.- Chapter 5. Experimental Results.- Chapter 6. Conclusion and Future Work.- References.- List Of Publications
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030106737
- Auflage 1st edition 2019
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H241mm x B160mm x T17mm
- Jahr 2019
- EAN 9783030106737
- Format Fester Einband
- ISBN 303010673X
- Veröffentlichung 03.01.2019
- Titel Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering
- Autor Laith Mohammad Qasim Abualigah
- Untertitel Studies in Computational Intelligence 816
- Gewicht 465g
- Herausgeber Springer International Publishing
- Anzahl Seiten 196